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Abstract1

Camera traps have been widely used in the last decade to monitor abundance of2

unmarked animal populations. Most estimation methods rely either on the number of3

times animals pass through the detection zones, like random encounter models (REM)4

or on the number of capture occasions in a time-lapse program when animals were seen5

on the pictures, like the instantaneous sampling approach (IS). We simulated a setup of6

either 100 or 25 camera traps randomly distributed on a 2600-ha area (respectively ≈ 47

and 1 trap/km2), along with the movements of a fictional population of 300 roe deer8

(Capreolus capreolus). We assessed the ability of these two classes of popular methods9

to estimate population size and detect a 20% decline over five years. Simulations were10

informed by field data on habitat, habitat selection and activity patterns of11

GPS-monitored roe deer. Both IS and REM estimated population size without bias,12

with a coefficient of variation only equal to about 15% (4 traps/km2) or 30% (113

trap/km2). Despite a huge sampling effort and simplified assumptions (perfectly known14

day range, constant sensor sensitivity), both methods failed to detect the strong15

population decline in 2/3 to 3/4 of simulations (4 traps/km2), and in about 4/5 of16

simulations (1 trap/km2). We tested other sampling strategies to improve this17

sensitivity, which either led to an unchanged population size estimation precision18

(stratified sampling) or to biased estimated trends (sampling only in high-quality19

habitats). Simulating animals with a 10 times larger home-range, like red deer (Cervus20

elaphus), allowed to detect the decline more frequently (60% to 95% with 4 traps/km2,21

and 1/3 to 2/3 of the simulations with 1 trap/km2). These results suggest that the key22

metric for camera trap use is the average number of different traps visited per animal,23

which in turn depends on trap density, home-range size and space use heterogeneity.24

We provide a R package allowing the reader to reproduce these simulations, and carry25

out their own.26
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Introduction1

Camera traps are used to reach many goals in wildlife studies, including estimating2

occupancy, studying animal behaviour, and investigating species interactions, in particular3

predator-prey interactions (see the review by Burton et al. 2015). Estimating the size of a4

population with capture-recapture methods, taking advantage of the possibility to identify5

animals based on phenotypic patterns, has also been among the first use of camera traps, in6

particular concerning elusive carnivores (Karanth 1995). More recently, a large amount of7

literature has been devoted to the use of camera traps to estimate the size of the8

population of non-identifiable animals (Rowcliffe et al. 2008, Nakashima et al. 2017, Howe9

et al. 2017, Moeller et al. 2018). The basic idea of these methods is that the number of10

animals detected by the traps can be used to infer the number of animals present in the11

study area.12

Two main families of methods have been proposed to achieve this aim: those based on13

animal-trap encounters, which quantify the number of animals passages through the14

detection zones of traps motion sensors, and those based on animal-trap associations, which15

count animals at capture occasions within time-lapse programs (Campos-Candela et al.16

2018). The random encounter model (REM, Rowcliffe et al. 2008) is a prominent example17

of the first family, while camera trap distance sampling (Howe et al. 2017), instantaneous18

sampling (IS, Moeller et al. 2018) or the similar “association model” of Campos-Candela19

et al. (2018) exemplify the second.20

These estimation methods are often seen as a grail, in that they allow the estimation of21

population abundance, a key population parameter (Williams et al. 2002) without resorting22

to the labor-intensive capture-recapture approach. Many practitioners are attracted by such23
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approaches (Gilbert et al. 2020), and some even want to replace their well-established1

monitoring methods with these new, easier to implement ones (pers. obs.). This might be a2

problem, as the properties of these new methods are not yet fully understood, and3

numerous factors must be considered when using them.4

Thus, one major issue when estimating a population size is the imperfect detectability5

of the animals in the detection zone (Gilbert et al. 2020). Most camera trap studies rely on6

the use of motion sensors to trigger the traps when an animal enters the detection zone.7

However, such sensors are less sensitive when the animals are small or far from the trap.8

The camera traps characteristics (brand, model, etc.) may also have an effect on the9

detection probability of the animals in the detection zone. Obstacles may further limit its10

effective surface area. Numerous authors have insisted on the need to account for this11

imperfect detection in population size estimation (e.g., Howe et al. 2017, Moeller et al.12

2023). However, most practitioners continue to ignore this issue, leading to potential biases13

in their estimates (Burton et al. 2015). Nevertheless, population trend estimates may still14

be unbiased, unless habitat structure changes over time (e.g. vegetation growth or human15

disturbance, Guillera-Arroita 2017).16

A related issue is the presence of resting periods, during which animals are inactive and17

less detectable by motion sensors. Such periods do not necessarily affect estimation18

accuracy if the camera traps are randomly distributed over the study area, and if the19

resting areas have the same probability to be monitored as other areas (e.g., no burrows).20

However, even when these assumptions are satisfied, the decreased detectability of inactive21

animals by motion sensors in the trap detection zone can lead to density underestimation.22

Numerous methods have been proposed to account for such activity patterns in population23

size estimation (e.g. Nakashima et al. 2017), though a common approach is to focus the24
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monitoring on periods when it is reasonable to suppose that all animals are active (Howe1

et al. 2017).2

Empirical validation of camera trap-based methods for estimating population size3

remains limited. Most comparative studies employ reference density values estimated using4

established methods such as conventional distance sampling (Rovero and Marshall 2009,5

Caravaggi et al. 2016) or capture-recapture (Twining et al. 2022). However, these6

comparisons, carried out over a few years, often involve only a limited number of imprecise7

estimates from both camera-trap estimation methods and “reference” methods, often8

leading to conclusions that no difference can be detected between the two families of9

methods, which does not constitute proof of estimate equivalence. On the other hand,10

simulations offer a valuable alternative, enabling numerous replications of a specific camera11

trap study setup under fully known and user-controlled demographic and spatial conditions12

(Santini et al. 2022).13

In this paper, we assess the feasibility of using camera traps to monitor roe deer14

(Capreolus capreolus) abundance through simulation, while examining how camera and15

habitat characteristics, along with animal behaviour, influence detection probabilities.16

Specifically, we explore how the differential use of habitats with varying detection17

properties, combined with the animals’ activity rhythms, affects their detectability. To do18

so, we simulated realistic movements of animals, incorporating habitat selection and19

activity patterns (resting, foraging and exploring) informed from the GPS-monitoring in a20

roe deer population. We simulated a decreasing trend in population size across years, and a21

correlated increase in home-range size (Kjellander et al. 2004). We assessed the estimation22

precision and the ability to detect the simulated declining trend of two population size23

estimation methods: one method relying on encounters (random encounter model, Rowcliffe24
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et al. 2008) and one method relying on associations (instantaneous sampling, Moeller et al.1

2018). We also assessed the effect of placing all camera traps in the most selected habitat2

type, as well as the effect of stratified sampling, on the precision of the trend estimates.3

Finally, we explored the possibility to expand these results to other species, so that we also4

simulated the monitoring of a species with a larger home range, which is more5

characteristic of larger ungulates like the red deer (Cervus elaphus).6

We provide a companion R package named simCTChize, available at7

https://github.com/ClementCalenge/simCTChize, containing all the code and data used8

for these simulations. The supplementary material corresponds to the package PDF9

vignette, and describes how the user can install this package and easily reproduce the10

calculations carried out in this paper. This vignette also includes numerous additional11

details on the simulations that we omit in this paper to keep it concise (specific values of12

the parameters used for the movement processes or the detection functions of the camera13

traps, density of trees simulated in the detection zone, etc.). Finally, this package also14

contains a tutorial allowing the user to design their own simulations if they want to design15

a monitoring for another forest species.16

1 Material and Methods17

1.1 Simulating realistic roe deer movements and their detection by camera18

traps19

We first simulated a population of moving animals in the Chizé reserve, France (46.083◦ N,20

0.417◦ W), during five years. We chose this enclosed 2614 ha forested study area because21

its roe deer population has been monitored for over 30 years (Pellerin et al. 2017), and22
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space use by the roe deer was extensively studied (Saïd et al. 2005, Pellerin et al. 2008,1

2010, Gaudry et al. 2018). This population monitoring provides us with a wealth of data on2

demographic parameters (survival, reproductive rates), enabling the development of3

realistic population simulations. The northern part of the study area (1385 ha) is mainly4

composed of an oak stand (Quercus spp.) characterized by a high quality forage source,5

whereas the southern part (1228 ha) is mainly composed of a beech stand (Fagus sylvatica)6

with poor resource quality Pettorelli et al. (2001). Consequently, roe deer density is higher7

in the northern part of the area, a spatial heterogeneity that we incorporated into our8

subsequent simulations.9

We simulated animal movements using a model that combined multiple10

Ornstein-Uhlenbeck with foraging (OUf) processes (Fleming et al. 2014). Each process was11

characterized by distinct parameters – attraction points, speed and relocation12

autocorrelations, and patch sizes – to represent various animal movement behaviours, such13

as foraging and inter-patch movements, analogous to the mixed models proposed by14

Blackwell (1997) and Michelot et al. (2019). The model also accounted for the presence of15

resting periods.16

We estimated 25 utilization distributions for March using GPS data from 15 roe deer17

monitored in Chizé from 2003 to 2008 (Note: some roe deer were monitored during multiple18

years). The kernel method was applied, and we subsequently identified the modes of these19

distributions (see Pellerin et al. 2008, for more details on the monitoring of these animals).20

This resulted in 25 sets of points (between 1 and 17 points per set), which we used to21

simulate the presence of attraction points for our simulated animals. To simulate the22

movement of an animal, we randomly selected one of these sets and randomly placed it on23

our study area, giving its centroid a probability equal to 0.64 to be located in the northern24
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part to reflect the higher habitat quality in this region, as reported by Pettorelli et al.1

(2001). We made sure that all the simulated movements were located within the limits of2

the study area when sampling a centroid position, to make sure that all animals were3

present within the study area during the whole study period and to avoid edge effects on4

our results. When an animal survived across multiple years, we used the same centroid for5

this animal during all years, thereby simulating its sedentarity.6

We then simulated our movement model. We first supposed two types of movements for7

each animal: (i) Patch-level movements characterized by OUf processes with small8

variances and centred on one attraction point (see below); (ii) Between-patch movements9

characterized by OUf processes with larger variances, also centred on one attraction point.10

The supplementary material gives more details on the precise parameterization of these11

OUf processes. Analysis of the GPS data showed that we could roughly describe animal12

movements as randomly switching between three behaviours: resting (immobility),13

patch-level movements (movement concentrated within a very small portion of the home14

range) and between-patch movements (larger movements within the home range). From15

this dataset, we derived rough estimates of both the daily frequency and timing of these16

movements types (unpublished results). This information was used to parameterize the17

simulated movements in our simulations. Fig. 1 gives a schematic description of the18

approach used to simulate this stochastic switching, and we describe this approach more in19

detail below.20

We simulated the same activity cycle for all animals and all days of the study period.21

We simulated the animal movement during each day between the 1st and 31st of March, as22

follows. For each day (starting at 17:00 and ending à 16:59), we first simulated the presence23

of a main resting period with a probability equal to 0.85, its starting time m being24
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randomly drawn between 8:00 and 15:00. The duration (in hours) of this resting period was1

equal to 15-m+ e, with e a residual randomly drawn from an Gaussian distribution N (0, 1),2

and truncated so that this resting period never ends after 16:59. We then randomly placed3

patch-level movements during the remaining periods of the 24h sequence. We simulated the4

start time of these patch-level movements by simulating a Poisson process with constant5

intensity ensuring the presence of 0.66 patches per night on average, with a duration6

randomly drawn between 0h and 5h. Finally, we placed resting patches in the remaining7

periods (except between 6:00 and 8:00, when all deer are considered active). We simulated8

the start time of these resting patches by simulating a Poisson process with constant9

intensity ensuring the presence of 0.33 patches per night on average, with a duration also10

randomly drawn between 0h and 5h. Between-patch movements were simulated in the11

remaining periods.12

When the animal switched from one movement type to another (e.g., from13

between-patches to patch-level, from patch-level to between-patch, or from resting to14

between-patch), a new attraction point was randomly drawn from the simulated set. When15

the animal initiated a resting period, it stopped moving immediately and remained16

stationary until the period ended. An example of simulated movements is given in Fig.17

2A).18

We randomly placed camera traps on the study area (see next sections), and simulated19

for each trap a motion sensor (i.e., camera traps triggered by the presence of animals,20

taking at most one picture per second). We defined a detection zone for each trap21

consisting of a 20 metres circular sector with an angle of 10 degrees. We chose this angle22

based on Rowcliffe et al. (2008), but the results of the simulations were not affected by this23

choice (see section 5.5 of the supplementary material for a set of simulations with an angle24
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of 42 degrees). When the movement of animals crossed the detection zone, we simulated1

imperfect detection by the sensors (Fig. 2B). We simulated a detection probability2

decreasing with the distance to the camera trap, and depending on the habitat type where3

the trap was located. Three habitat types are present in our area: (i) Coppice (76% of the4

study area), (ii) Open habitat (6% of the study area), (iii) Regeneration (18% of the study5

area). In Coppice and Open habitat types, we chose the parameters of the detection6

probability to ensure that the detection probability was equal to 0.99 at 5 metres from the7

trap and to 0.01 at 18 metres from the trap (calibrated visually from the results of Howe8

et al. 2017). We simulated the presence of trees obscuring the view in the Coppice habitat9

type (see supplementary material for more details on the distribution of tree diameters). In10

the regeneration habitat type, we did not simulate explicitly the presence of such obstacles,11

but we subjectively chose parameters ensuring a detection probability of 0.99 at 0.5 metres12

and 0.01 at 3 metres. Finally, we supposed that an animal resting in the detection zone13

could not be detected by the sensors. More details on the parameters of the detection14

process are given in supplementary material.15

1.2 Three types of simulations16

1.2.1 Roe deer population, no habitat selection17

We simulated a simple population dynamics process. We used the data collected on the18

Chizé study area for the last 30 years to derive rough estimates of the key demographic19

parameters in this are, which were used to calibrate the simulations (based on the estimates20

of a capture-recapture model fitted every year to field data by the last author, but see also21

Gaillard et al. 1992, 1993, 1997, for other sources). We established an initial population size22
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of 300 roe deer with a balanced sex ratio. Each year, 90% of females were assumed to1

reproduce, with an average of 1.7 fawns per reproducing female. We simulated a fawn2

survival probability of 0.3 and an adult survival probability of 0.7. These parameters,3

selected from realistic ranges observed on the area, were chosen to induce a gradual4

population decline from 300 animals during year 1, to 239 animals during year 5 (see5

supplementary material for exact numbers of animals simulated every year).6

We simulated an influence of the decreasing population density on animals’ home-range7

by gradually increasing mean home-range size over time. Kjellander et al. (2004) indeed8

observed this negative correlation between home-range size and population density in two9

populations. In reality this relationship can be complex (see discussion), but our aim here10

was to assess the effect of the opposite effects of the density decline and increasing11

home-range size on the number of detections by the traps. More precisely, we gradually12

increased the variance of the OUf process controlling for the between-patch movements. We13

also varied the list of sets of attraction points used to define the patches, considering only14

the 19 “small” sets with less than 10 attraction points during the first year, and15

progressively adding an increasingly larger sample of the 6 “large” sets with more than 1016

attraction points in year 2 to 5. This led to a progressive increase of the home-range size,17

from an average of 13.1 ha during year 1 (SD = 4.4 ha) to 25.8 ha during year 5 (SD =18

12.9 ha). Note that this increase in home-range size also affected the average movement19

speed of the animals, which may be important given that REM estimators require the20

knowledge of average speed.21

Thus, we simulated the movements of all animals of the population during the month of22

March (i.e., after reproduction when animals are no longer territorial, and before the births23

of fawns) for every year of the 5-year period. To simulate camera trap monitoring, we24
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randomly placed either 100 or 25 camera traps over the study area, corresponding to a1

density of approximately 4 traps/km2 and 1 trap/km2 respectively. We then used the REM2

and IS to estimate the population size from the data collected by these traps (see below).3

For each density of camera traps (4 or 1/km2), we carried out 1000 simulations of a camera4

trap monitoring.5

1.2.2 Roe deer population, selection of paths neighborhood6

The previous simulations did not account for habitat selection by the target species. In7

practice, researchers utilize knowledge of habitat use by the species to enhance their8

monitoring design. This can involve stratification, where pre-specified proportions of9

camera traps are placed in the different habitats, with overall density calculated as a10

weighted average of the habitat densities (Rowcliffe et al. 2008). Alternatively, some studies11

abandon unbiased population size estimates in favor of unbiased trends estimates. To12

achieve this, they maximize detections by deploying camera traps only in highly selected13

habitats or in locations with high detection probabilities (e.g., open habitat), assuming a14

constant bias in size estimates. This strategy relies on increased detections to enhance15

trend precision. We assessed these two strategies with a new set of simulations, by16

simulating a strong habitat selection by the roe deer. We limited these simulations to a17

trap density of 4 traps/km2 (100 traps).18

We simulated a strong selection of the human paths and roads by the roe deer on our19

study area. This specific selection of linear features by the roe deer is not expected in20

reality from a biological point of view, as such features are generally found at the21

home-range periphery (Seigle-Ferrand et al. 2021). However, this artificial scenario allows22

us to illustrate the ideal situation where the camera traps are placed in habitats with both23

12
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high target species abundance and maximum detection probability.1

We defined “paths neighborhood” as the 20-metres buffer around each human path or2

road present in our study area. We simulated a selection of this habitat type by the roe3

deer: we first selected the location of the home-range centroid in the northern part with a4

probability of 0.64, as before. However, for this set of simulations, we ensured that: (i) the5

centroid was located in the paths neighborhood, (ii) it was located at more than 600 m6

from the border of the study area (to make sure that all the movements were located within7

the area). Then a random number of attraction points comprised between 3 and 10 was8

selected within a random distance comprised between 100m and 300m from this centroid,9

making sure that all these points were located within the path neighborhood. We then10

carried out again the simulations described in the previous section, using these randomly11

generated attraction points instead of a randomly selected set of attraction points as before.12

As for the previous set of simulations, we varied the parameter σ2 of Ornstein-Uhlenbeck13

processes to simulate an increase in home-range size across years (see supplementary14

material).15

We then simulated two types of camera trap monitoring, corresponding to the two16

strategies described previously. In the first simulation type, we assessed the impact of17

placing all camera traps within highly selected habitat, specifically by randomly18

distributing them in the paths neighborhood.19

In the second type of simulations, we evaluated the impact of stratified sampling on the20

precision of population size estimates. We simulated various stratified sampling designs,21

allocating 5% to 95% of the 100 traps to path neighborhoods in 5% increments. In practice,22

we did not simulate a single study with X% of traps in the path neighborhoods. Instead,23

we simulated two separate studies: one with all 100 traps placed in path neighborhoods and24
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another with all 100 traps placed outside of path neighborhoods. To simulate stratified1

sampling, we combined the detection data from these two scenarios by randomly selecting2

the detections from X% of the traps from the first study (all traps in path neighborhoods)3

and the detections from 100-X% of the traps from the second study (all traps outside path4

neighborhoods). This allowed us to assess the impact of different proportions of traps in5

path neighborhoods on population size estimates without directly simulating a stratified6

sampling design within the population itself (which was less computer intensive). Although7

the animals simulated in the two scenarios (100% and 0% in paths neighborhood) are not8

the same, we showed in the supplementary material that the results obtained with this9

approach do not differ from an approach where we simulated an actual stratified monitoring10

of the population where all 100 traps study the same animals.11

We simulated each simulation type 500 times.12

1.2.3 “Red deer” population, no habitat selection13

Finally, we aimed to assess the effect of the species home-range size on the results. To do14

so, we considered an animal with a home-range size similar to that of the red deer (Cervus15

elaphus). Although the simulated animal remains the same as before (e.g. same activity16

rhythm), with the only difference being a significantly larger home range, we will refer to17

this animal as the “red deer” in the following. We used the same movement algorithm as18

for the roe deer, with the following differences in parameterization: (i) we increased19

strongly the value of the variance of the between-patch and patch-level movement, (ii) the20

attraction points are randomly drawn in a rectangular box of 4 kilometres wide centred on21

the home range centroid. We did not simulate a home-range size varying with population22

decline over the 5 years. The simulated home-ranges covered 469 ha on average23

14
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(interquartile range: 383 to 548 ha).1

As for the roe deer, we simulated a population size of 300 red deer, which corresponds2

to a high density for this species though not unrealistic (Borowik and Jwdrzejewska 2018).3

This choice allowed a comparison with the results obtained for the roe deer. We assumed a4

sex-ratio of 0.5, an adult annual survival of 0.76, and a reproduction equal to 0.5 fawns per5

female. The simulated number of red deer was equal to 240 during the last year,6

corresponding to a 20% decrease in 5 years.7

We then placed randomly either 4 traps/km2 or 1 trap/km2 over the study area. For8

each number of traps, we simulated 1000 times the camera trap monitoring.9

1.3 Population size estimates10

For each simulation of each simulation set, we estimated the population size using two11

methods, REM and IS. To use the REM population size estimator, we need to consider the12

total number Q of animal-trap encounters. The estimator is:13

N̂rem =
S ×Q× π

A× v × r × (2 + θ)
(1)

With N̂ the population size estimate, S the study surface area, A the the cumulated14

activation duration of the traps, v the mean travel speed of the animals, and r, θ the depth15

and angle of the detection zone. Note that one of the biggest difficulties with the REM is16

that the mean travel speed of the animals is to be estimated, which can be an important17

source of imprecision of the population size estimation. In our simulations, we have18

considered that this mean speed is known. Although this will never be the case in practice,19

our aim was not to devise means to estimate travel speed.20

15
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To use the IS population size estimator, we needed to reshape our data. We discretized1

our study period (the month of March of every year during five years) into one-second2

intervals. We define “capture occasions” as J discrete moments marking the start of these3

intervals. For each capture occasion and each animal-camera trap pair, we determined4

whether a detection occurred (i.e., if the simulated motion sensor of the camera had5

detected the animal at that time). For each trap i and each capture occasion j, we define a6

new variable nij corresponding to the number of animal-trap associations (number of7

animals present in the detection zone at that time and detected by the trap). Let si be the8

surface area of the detection zone of the camera trap i. The IS population size estimator is:9

N̂is = S · 1
J
· 1

M

J∑
j=1

M∑
i=1

nij

si
(2)

where M is the number of traps placed on the area.10

The two estimation methods were applied each with three modalities: (i) we used the11

above estimators without accounting for the limited detectability of animals due to12

imperfect sensors, lack of visibility or activity rythm (hereafter, these estimators are simply13

called REM and IS), (ii) we accounted for the limited visibility in the detection zones by14

modifying these estimators (hereafter called REM_d and IS_d, see below), (ii) we15

accounted for both this limited visibility and the reduced detectability during resting16

(hereafter called REM_da and IS_da). For the REM estimator, the mean travel speed was17

computed exactly from the simulated movements, using all data for the REM and REM_d,18

and using only data collected during active periods for the REM_da.19

To account for the imperfect visibility in the detection zone in the REM estimator, we20

replaced Q in equation 1 by Q/p̄, where p̄ is the proportion of all encounters that were21

16
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detected by the traps. This average detection probability of encounters was estimated from1

the simulated data, where we knew the exact times when animals crossed trap detection2

zones. To account for this imperfect detectability of animals in the detection zone in the IS3

estimator, we replaced si by si × d̄ in equation 2 where d̄ is the mean detection probability4

of associations. This average detection probability of associations was also estimated from5

simulated data, where we knew the exact detection probability for all traps (as in fig.6

2(B)). Finally, to account for the limited detectability of animals in the detection zone7

during resting, we changed our study period to remove all the data collected between 8:008

and 17:00, when the main resting period occurs.9

For each estimator and each estimation modality, we estimated the population size for

each year of the 5 years period, as well as the change rate: CR = (N5 −N1)/N1. We also

calculated a mean estimated trend over the 5-year period:

λ̂ = exp

{
Cov(log N̂t, t)

Var(t)

}
− 1

where t is the year and N̂t the estimated population size during year t. This parameter λ̂10

estimates the proportion of the population disappearing in one year.11

When the simulations implied a stratified sample, we calculated one population size12

estimate for each strata and summed the two estimates. We used the bootstrap to estimate13

the variances and 90% confidence intervals on population size, change rate and trend14

estimates, by resampling for each estimation 1000 times with replacement the camera traps15

and recomputing the estimates to obtain a distribution of 1000 bootstrap estimates. When16

the simulations implied stratified samples, we bootstrapped the two strata separately.17

In total, all these simulations required ≈ 20 days of calculation on a Dell T561018

17
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workstation with a processor Intel(R) Xeon(R) CPU E54-2650 (2.6GHz).1

2 Results2

2.1 First simulation set: roe deer with no habitat selection3

We present the results of the simulations in Tables 1 (4 traps/km2) and 2 (1 trap/km2). In4

the two cases, it is clear that the two estimators strongly underestimate the population size5

when the imperfect visibility in the detection zone is not accounted for, and more strongly6

so for the IS. Accounting for this imperfect visibility leads to an unbiased estimate of the7

population size with the REM, but IS still results in a biased estimate. Accounting for the8

limited detectability of the animals in the detection zone when they rest results in an9

unbiased estimate for both IS and REM. The bootstrap allowed us to correctly estimate the10

standard error of the sampling distribution for all estimates. The trends and change rate11

were correctly estimated for all modalities and methods.12

With 4 traps/km2 on the study area, the population size estimation was rather13

imprecise (with a coefficient of variation of about 15% to 20%, depending on the method).14

A population size decrease was correctly identified in more than 80% of the simulations15

with all methods; however, this decrease was significant only in 1/4 to 1/3 of the16

simulations, depending on the estimation method.17

With only 1 trap/km2 on the study area, the population size estimation was even more18

imprecise (with a coefficient of variation of about 30% to 40%). A population size decrease19

was estimated correctly in about 2/3 to 3/4 of the cases, but this decrease was rarely20

significant (only in about 1/6 simulations).21

18
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2.2 Habitat selection by the roe deer1

When we simulated habitat selection and placed all the camera traps in the most selected2

habitat type, the population decrease was strongly overestimated (Table 3). Indeed, the3

estimated population decline was approximately 8% per year, leading to a 28% decrease in4

year 5 (i.e., 1− (1− 0.08)4 = 0.28), instead of the simulated 20% decline (corresponding to5

a yearly decline of 5.5%).6

Using a stratified sample allowed an unbiased population size estimation. The highest7

precision of the estimation was obtained when half of the traps were placed in the paths8

neighborhood and half out of this habitat (Fig. 3). However, this stratified sampling did9

not improve noticeably over a simple random sampling (the smallest coefficients of variation10

on this graph were similar to those obtained in Table 1).11

2.3 Simulations of a red deer population12

The simulations of a red deer population led to the same conclusions regarding the bias and13

precision of population size estimates: accounting for imperfect visibility in the detection14

zone led to less biased estimates by the REM and the IS, and accounting for the reduced15

detectability of resting animals by sensors led to unbiased estimates for the IS. The16

precision of population size estimates was comparable to that obtained for roe deer, for17

both 4 traps/km2 (Table 4) and 1 trap/km2 (Table 5). However, the trend and change rate18

estimations were much more precise. With 4 traps/km2, the simulated decrease was nearly19

always identified, and was significant in more than 95% of the cases for the REM, and in20

1/2 to 3/4 of the cases for the IS. With 1 trap/km2, the decrease was also frequently21

identified in most cases with the REM, and in more than 80% of the cases for the IS. The22
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decrease was significant in 1/3 (IS) to 2/3 (REM) of the cases.1

We also compared various descriptive statistics between the roe deer and the red deer2

population (Table 6). The mean number of encounters with red deer was more than twice3

that of roe deer. However, the mean speed of red deer was also more than twice bigger than4

that of roe deer, so that the resulting number of animal-trap associations (and its standard5

deviation) was similar for the two species. As a result, the population size estimates were6

comparable between the two populations, whether estimated with REM or by IS. However,7

since the home-range size was much larger for the red deer than for the roe deer (36 times8

larger during year 1), the average red deer visited 7 times more traps than the average roe9

deer. As a result, each camera trap, on average, detected 7 times more red deer individuals10

than roe deer individuals. Therefore, when a red deer died between two years, the number11

of encounters and associations decreased in a larger number of traps than for the roe deer12

(and conversely when a new animal was born). As a result, by bootstrapping the camera13

traps to calculate the standard deviation for the trends, it was much easier to detect red14

deer population changes than roe deer population changes.15

3 Discussion16

We have simulated different settings of camera trap monitoring of a roe deer population.17

Our simulations revealed the importance of accounting for imperfect visibility in the18

detection zone to estimate the population size correctly with the REM method and even19

more with the IS method. Moreover, it was also important to account for the limited20

detectability of animals due to the activity rhythm of the animals for the IS method only.21

This was less important for the REM, as long as the mean speed was correctly estimated by22

20
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including inactivity periods. Although the population trend or the change rate were1

accurately estimated, even without accounting for imperfect visibility or activity rhythm2

(Table 1), the estimates were very imprecise and often not significantly different from zero.3

With 1 camera trap/km2, the roe deer population size and trend estimates were so4

imprecise that they were virtually useless (Table 2). When we simulated animals with a5

much larger home range, the trend estimates were much more precise, even with only 16

trap/km2. We also showed that placing the traps preferentially in the habitat selected by7

the species led to a strong overestimate of the population decrease. Finally, we showed that8

using a stratified sampling did not improve the precision of population size estimation9

compared to random sampling.10

We used the REM and IS to estimate the population size of the roe deer and red deer11

populations. We did not compare the two methods to determine which one was the more12

interesting for the monitoring. Such a comparison would be difficult, as the two methods do13

not require the same elements to be used. Thus, our results seem to indicate that the two14

methods give comparable results, though the REM seems more precise than the IS in our15

simulations. However, as Nakashima (2022) noted, the mean movement speed, which we16

supposed known in our simulations, is never known in practical studies and has to be17

estimated. The uncertainty of this parameter estimation results in a larger uncertainty of18

the population size estimates, so that comparing IS and REM is not fair without19

accounting for the speed estimation. There are numerous other methods available to20

estimate the population size based on camera trap data collected on unmarked populations21

(Nakashima et al. 2017, Moeller et al. 2018), and we chose IS and REM because they were22

the most easily automated (easily computed estimator that does not rely on the complex fit23

of a model) and because they belonged to the two main families of estimation methods:24

21
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methods relying on the encounters and methods relying on associations. We think that our1

simulation results, that are similar for REM and IS, also generalize to other methods.2

Our results are consistent with previous research highlighting the importance of3

accounting for the imperfect visibility in the detection zone to obtain unbiased population4

size estimates (Moeller et al. 2018, 2023). While we assumed perfect knowledge of detection5

probabilities in our simulations, real-world applications require estimating these6

probabilities, which can introduce additional uncertainty into population size estimates.7

Accounting for this imperfect detectability of animals in the detection zones with methods8

relying on detection is basically the rationale behind the camera-trap distance sampling9

(Howe et al. 2017). Thus, IS without accounting for detectability is very similar to10

camera-trap distance sampling where the detection probability is set equal to 1.11

In our study, the roe deer population was characterized by a home-range size increasing12

with time, as a result of the decreasing animal density. This correlation can occur under13

various ecological conditions. For instance, in the hypothetical case where reduced habitat14

productivity (e.g., caused by shifts in land management practices) triggers a population15

decline due to diminished foraging resources, the habitat productivity hypothesis predicts16

that resource scarcity should also drive an increase in home-range sizes, as individuals17

compensate for limited resources (Harestad and Bunnel 1979). Alternatively, this18

correlation might emerge from density-dependent behavioral mechanisms: declining19

populations could reduce competition among males, potentially allowing for larger20

individual territories. Such an inverse relationship between male home-range size and21

density has been identified in the roe deer by Vincent et al. (1995). Note that the habitat22

productivity hypothesis may also predict a positive correlation between home-range size23

and population density under different conditions. For example, if population reductions24
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stem from non-habitat factors (e.g., hunting pressure), lower densities could increase1

resource availability per capita, thereby shrinking home ranges. Regardless of the2

underlying mechanism, such correlations do exist in nature, and may bias density3

estimation with the REM when the increase in home-range size is also correlated with4

increased mean animal travel speed: in our simulations, the mean speed was 30% smaller in5

year 1 than in year 5. As the population size estimator is inversely related to this mean6

speed, using a single value of mean speed for all years, as commonly done in studies using7

REM, would result in a substantially biased estimation (e.g., using the mean speed of year8

1 for all years in equation 1 would result to a 30% underestimation in population size9

during year 5).10

Accounting for activity patterns had a minimal impact on REM population size11

estimates. The random camera placement meant resting areas were sampled as frequently12

as active ones. While resting animals are undetectable by motion sensors, their entry and13

exit from a trap’s detection zone, which requires movement, allow encounter detection.14

Therefore, resting periods within encounters did not affect REM results. On the other15

hand, since association-based methods strongly rely on the detection of animals at any16

moment of the encounters, the presence of a resting period during an encounter may lead to17

a large number of associations missed by a motion-triggered sensor, which explains why18

association-based methods are more sensitive to activity patterns. Avoiding to include the19

monitoring periods during which a substantial fraction of the animals are resting allows to20

remove this small bias, which is also consistent with the findings of previous authors (Howe21

et al. 2017). This is the simplest approach to account for the activity rhythm of animals,22

and although other approaches are possible (e.g., by estimating the proportion of the day23

during which the animal is active and by modifying the duration of the study period in the24

23

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2025. ; https://doi.org/10.1101/2025.03.20.644315doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.20.644315
http://creativecommons.org/licenses/by/4.0/


equations Nakashima et al. 2017), our approach led to unbiased population size estimates.1

Our results raise the question of whether motion-sensors or time-lapse programming of2

camera traps are preferable for camera trap studies. Association-based methods require3

time-lapse data, which can be obtained by direct time-lapse programming or4

post-processing of motion-triggered trap data. Direct time-lapse programming eliminates5

sensor sensitivity bias, but image analysis, often AI-assisted (Rigoudy et al. 2023), may still6

introduce detectability issues related to distance and visibility. Nevertheless, contrarily to7

motion sensors, direct time-lapse programming is not affected by the activity of the animal8

and detects both active and resting animals equally. However, the short time-lapses needed9

for association-based methods (Howe et al. 2017) raise storage challenges: trap’s memory10

fills up quickly. Therefore, direct time-lapse programming might not be adequate with11

association-based methods.12

The fact that it was not necessary to account for the activity rhythm of animals and13

imperfect visibility in the detection zones in our trends estimate is probably a result of our14

simulation design. Indeed, as long as the simulated detection probability and activity15

rhythms of animals were the same across years, the resulting bias in the population size16

estimate was constant, allowing for unbiased estimation of the population trends. However,17

we do not expect this result to hold if the detectability in the detection zones or the18

activity rhythm changes across years. For example, the encroachment of shrubs into the19

study area would lead to an average detection probability decreasing with time.20

Considering constant detection, or not considering detection at all, would result in an21

increasing underestimation of population size with time and, consequently in our example22

of declining population, in an overestimation of the decreasing trend. Not accounting for23

the activity rhythm or the imperfect detection in trend estimation is only possible under24
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the assumption that these phenomena do not vary with time.1

This variation of animal behaviour across years does explain our overestimation of the2

decline when the traps are placed in highly-selected habitats only. Indeed, since we knew3

that the roe deer selected preferentially the paths neighborhood, it seemed intuitive to4

place all the traps in this habitat to maximize the number of detections, and thereby5

enhance the precision of the estimated trend. However, this placement led to a strong6

overestimation of the decreasing trend (the percentage of the population of year 1 that had7

disappeared in year 5 was 20%, but was estimated at 28%). This was caused by the8

simulated change in home-range size. Indeed, the simulated negative correlation between9

population size and home-range size led to larger home ranges during year 5. Even if the10

habitat preferences of the animals were the same during the 5 years of the study,11

individuals spent more time travelling between selected patches in later years. Therefore, in12

average the animals spent less time in paths neighborhood in year 5 than in year 1 (Fig. 4).13

The mean proportion of the population located in the paths neighborhood at a given14

moment was therefore not constant across years, which resulted in an overestimation of the15

decrease of the population. The supplementary material demonstrates mathematically that16

combining the actual population decrease with this decrease in the proportion of the17

population in the paths neighborhood results in an annual decrease of 8% of the number of18

encounters/associations in this habitat.19

While altering the sampling strategy could potentially enhance estimate precision, we20

found no suitable approach; specifically, stratification did not improve precision compared21

to simple random sampling. Another common strategy involves placing camera traps at the22

nodes of a regular grid, thereby ensuring a good spatial coverage of the population. We did23

not consider this grid-based strategy, as it would have yielded results similar to random24
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sampling: given our random distribution of home ranges across the study area, the spatial1

relationship between animals and traps would have been equally random for both2

grid-based and simple random sampling. The estimates would therefore have been3

equivalent. Furthermore, density estimation theory assumes random trap placement (e.g.4

Rowcliffe et al. 2008), making grid-based sampling potentially unsuitable.5

Several aspects of our simulations were oversimplistic: our simulated animals6

corresponded to a point moving in a 2D space, and not to a volume moving in a 3D space.7

This simplification may affect some of our results. For example, when the point8

representing the animal was located behind a tree, it was supposed to be completely hidden9

by the tree, whereas in reality animals can be detected by traps when they are located10

behind small trees. We think that this did not affect strongly our results, as we simulated11

the presence of trees only for the coppice habitat type (which represents 76% of the study12

area), and always at a low density (see supplementary material for details): there was in13

average 0.37 trees simulated in the detection zone of a camera trap located in the coppice14

habitat. Simulations showed that the trees obscured in average only 1.2% of the detection15

zone of a trap in the Coppice habitat, and these trees had more chance to be located far16

from the traps, i.e., where the detection probability is already low, since this is where the17

area of the detection zone is the largest.18

More generally, simplifying assumptions in our simulations led to an overestimation of19

precision in our results: Our camera traps did not deteriorate with time. We did not20

simulate any camera trap effect on the detectability of the encounters/associations.21

Although our simulated animals were characterized by a variable home range size, they all22

had the same activity rhythm. There were no differences between male and female, or23

young and adults. Animals were not gregarious (simulating gregarious animals would have24
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led to a greater variance of the encounter rate across camera traps). In other words, it is1

expected that the uncertainty characterizing the population size and trends estimates in2

actual studies will be much more important than those obtained in our simulations. And3

yet our results concerning the roe deer show that the estimation of population size and4

trends are very imprecise. Even with 4 camera traps/km2, the coefficient of variation of the5

population size estimate was about 15 to 20% and increased to 30 to 40% when only 16

trap/km2 were used. Similar coefficients of variations were obtained in previous studies7

(e.g., Palencia et al. 2022, obtained CV comprised between 34% to 75% when estimating8

the population size of various species with the REM, on areas comprised between 1400 to9

6600 ha with 7 to 37 camera traps during periods covering 15 to 138 days). Our study10

showed that a strong population decrease of 20% in 5 years was not significant in 2/3 to11

3/4 of the simulations when 4 traps/km2 were used, and this proportion rose to 5/6 when a12

density of only 1 trap/km2 was used. As our simulations were very optimistic, this13

proportion is expected to be much smaller in real studies. This shows that the use of14

camera traps for the monitoring of roe deer population trends is probably of limited value.15

The results obtained for the red deer were more encouraging. Even with only 1 camera16

trap/km2, we were unable to detect a 20% decrease of the population size in 1/3 to 2/3 of17

the simulations, depending on the methods used. This is still a low sensitivity, given the18

strong simulated population decrease and the numerous simplifying assumptions of our19

simulations. However, these results indicate that camera traps monitoring might not be20

immediately dismissed for larger species in areas of size similar to the Chizé forest. An21

important quantity governing the choice to use or not camera traps for population22

monitoring is the number of different camera traps that can capture a given animal in a23

given study area. This metric depends on multiple factors, including the number of traps24
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deployed, the species’ home-range size, heterogeneity of space use within the home range,1

and the size of the study area. For example, considering the red deer in our study,2

randomly placing 100 camera traps over the 2600 ha study area resulted in a density of3

approximately 4 traps/km2, meaning that roughly 18 traps were included within the4

average 4.5 km2 home-range. Because red deer home-range use is highly heterogeneous,5

with activity concentrated around a limited number of attraction points (see supplementary6

material for an illustration), the actual number of traps detecting a given red deer is7

considerably reduced, averaging 3.5 traps per animal (Table 4). Consequently, the death of8

a red deer between two years is detected by an average of 3.5 traps, resulting in a clear9

decrease in the number of encounters/associations detected by the traps. This explains the10

effectiveness of camera trap monitoring for this species under these conditions. In contrast,11

with a larger study area of 20000 ha and the same 100 traps, the trap density would12

decrease to 0.5 traps/km2. This would result in approximately 0.5×3.5/4 = 0.44 different13

traps encountered by a given red deer in average, similar to the value obtained for the roe14

deer in our simulations (Table 4). Indeed, for roe deer, with only 0.45 traps visited per15

animal in Chizé, most individuals remain undetected, resulting in low power to detect16

population declines.17

We advise the reader to proceed to simulations to determine whether or not camera18

traps are a suitable choice to design a monitoring of a given population. Our R package19

simCTChize can be useful to carry out such simulations. The supplementary material of the20

present paper, also available as a vignette of the package, contains a tutorial explaining21

how it can be used to reach this aim.22
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Table 1: Results of 1000 simulations of a roe deer population monitored for 5 years using 4
camera traps/km2 (see text). We use two methods to estimate population size, the random
encounter model (REM) and the instantaneous sampling (IS). For each method, we estimate the
population size: (i) without accounting for imperfect visibility in the detection zone or the reduced
detectability of animals by the motion sensors in this zone during their resting periods (REM and
IS), (ii) accounting for imperfect visibility but not for the limited detectability of animals during
their resting periods (REM_d, IS_d), (iii) accounting for both imperfect visibility and limited
detectability of animals during the resting periods (REM_da and IS_da). For each method, we
present the results for the population size during year 1 (N1) and year 5 (N5), as well as the trend λ
over five years (see text; lam, theoretical value = -0.0547) and the change rate CR (= [N5-N1]/N1;
theoretical value = -0.2). For each method and each parameter, we present the simulated value of
the parameter (TrueValue), the mean of estimated values (MeanEst), the standard deviation of the
distribution of estimated values (SE), the mean of the bootstrap estimates of this standard deviation
(SEEst), the standard deviation of the distribution of the bootstrap estimates of this standard
deviation (SE.SEEst), and the proportion of simulations for which the 90% confidence interval
estimated by the bootstrap includes the true value of the parameter (Pcov). For lam and CR, we
also present the proportion of simulations for which a decrease is estimated (negative value of lam or
CR; PDec), as well as the proportion of simulations for which the upper limit of the confidence
interval is smaller than 0 (PsigD).

Method Param TrueValue MeanEst SE SEEst SE.SEEst Pcov PDec PsigD
REM N1 300 237.31 37.875 38.687 6.215 0.511
REM N5 239 181.767 33.792 31.553 6.114 0.444
REM lam -0.0547 -0.063 0.049 0.048 0.007 0.869 0.906 0.364
REM CR -0.2033 -0.22 0.165 0.165 0.043 0.859 0.906 0.378

REM_d N1 300 303.86 45.68 49.51 7.853 0.923
REM_d N5 239 232.533 40.045 40.352 7.572 0.882
REM_d lam -0.0547 -0.063 0.049 0.048 0.007 0.867 0.906 0.367
REM_d CR -0.2033 -0.22 0.165 0.169 0.042 0.9 0.906 0.327

REM_da N1 300 303.224 47.154 50.959 8.427 0.928
REM_da N5 239 232.706 41.018 41.146 7.83 0.882
REM_da lam -0.0547 -0.062 0.051 0.05 0.007 0.867 0.889 0.344
REM_da CR -0.2033 -0.217 0.172 0.176 0.045 0.904 0.891 0.311

IS N1 300 54.903 9.955 10.084 1.897 0
IS N5 239 42.983 8.975 8.3 1.844 0
IS lam -0.0547 -0.058 0.055 0.055 0.008 0.88 0.843 0.289
IS CR -0.2033 -0.198 0.195 0.198 0.057 0.87 0.848 0.279

IS_d N1 300 262.512 47.812 46.688 11.689 0.737
IS_d N5 239 205.374 40.169 37.611 9.195 0.682
IS_d lam -0.0547 -0.057 0.056 0.054 0.008 0.884 0.854 0.279
IS_d CR -0.2033 -0.197 0.196 0.197 0.056 0.882 0.841 0.276

IS_da N1 300 298.869 57.784 56.794 15.407 0.881
IS_da N5 239 233.97 49.233 45.015 12.228 0.849
IS_da lam -0.0547 -0.057 0.059 0.057 0.009 0.885 0.833 0.272
IS_da CR -0.2033 -0.193 0.211 0.214 0.067 0.891 0.834 0.257
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Table 2: Results of 1000 simulations of a roe deer population monitored for 5 years using 1
camera trap/km2 (see text). We present the same estimates and the same methods as in Table 1.

Method Param TrueValue MeanEst SE SEEst SE.SEEst Pcov PDec PsigD
REM N1 300 235.668 78.199 72.339 23.699 0.688
REM N5 239 181.565 64.232 59.381 21.176 0.638
REM lam -0.0547 -0.057 0.099 0.097 0.026 0.87 0.732 0.186
REM CR -0.2033 -0.161 0.383 0.417 0.358 0.871 0.738 0.193

REM_d N1 300 301.727 93.669 92.96 29.521 0.868
REM_d N5 239 232.242 76.207 76.196 26.018 0.864
REM_d lam -0.0547 -0.057 0.099 0.097 0.026 0.872 0.732 0.192
REM_d CR -0.2033 -0.161 0.383 0.417 0.289 0.887 0.738 0.161

REM_da N1 300 301.069 97.229 95.555 31.466 0.871
REM_da N5 239 231.893 78.276 77.683 26.871 0.861
REM_da lam -0.0547 -0.056 0.104 0.1 0.027 0.861 0.722 0.187
REM_da CR -0.2033 -0.15 0.413 0.436 0.276 0.877 0.734 0.159

IS N1 300 54.785 20.805 18.818 7.119 0
IS N5 239 42.953 16.803 15.415 6.117 0
IS lam -0.0547 -0.053 0.115 0.111 0.034 0.856 0.701 0.159
IS CR -0.2033 -0.107 0.503 0.628 0.908 0.848 0.701 0.166

IS_d N1 300 263.562 97.551 87.342 36.81 0.768
IS_d N5 239 204.538 75.535 69.373 28.575 0.745
IS_d lam -0.0547 -0.053 0.113 0.108 0.03 0.851 0.699 0.157
IS_d CR -0.2033 -0.119 0.482 0.605 1.06 0.856 0.703 0.167

IS_da N1 300 301.313 120.668 105.91 50.082 0.816
IS_da N5 239 233.349 91.489 83.106 36.841 0.826
IS_da lam -0.0547 -0.051 0.124 0.115 0.033 0.856 0.699 0.147
IS_da CR -0.2033 -0.091 0.586 0.813 3.492 0.85 0.688 0.155
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Table 3: Results of 500 simulations of a roe deer population monitored for 5 years using
4 camera traps/km2, where all animals display a preference for the neighborhood of paths
and where all the traps have been placed in this neighborhood (see text). We present the
same statistics for the estimated trend as Table 1, for the same estimation methods.

Method MeanEst SE SEEst SE.SEEst Pcov PDec PsigD
REM -0.08 0.03 0.03 0.00 0.73 1.00 0.87
REM_d -0.08 0.03 0.03 0.00 0.73 1.00 0.86
REM_da -0.08 0.03 0.03 0.00 0.75 1.00 0.83
IS -0.08 0.04 0.04 0.01 0.77 0.99 0.70
IS_d -0.08 0.04 0.04 0.01 0.79 0.99 0.71
IS_da -0.08 0.04 0.04 0.01 0.81 0.99 0.69
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Table 4: Results of 500 simulations of a red deer population monitored for 5 years using 4
camera traps/km2 (see text). We present the same statistics for the same estimation methods as in
Table 1.

Method Param TrueValue MeanEst SE SEEst SE.SEEst Pcov PDec PsigD
REM N1 300 207.511 40.895 40.456 4.87 0.325
REM N5 240 165.729 33.028 32.409 4.006 0.315
REM lam -0.0543 -0.055 0.013 0.012 0.002 0.875 1 0.989
REM CR -0.2 -0.2 0.047 0.046 0.009 0.885 1 0.976

REM_d N1 300 296.257 52.281 57.931 6.602 0.916
REM_d N5 240 236.537 41.961 46.383 5.297 0.916
REM_d lam -0.0543 -0.055 0.013 0.012 0.002 0.874 1 0.991
REM_d CR -0.2 -0.2 0.047 0.046 0.009 0.937 1 0.993

REM_da N1 300 296.516 52.561 57.848 6.605 0.921
REM_da N5 240 236.556 42.166 46.411 5.377 0.916
REM_da lam -0.0543 -0.055 0.015 0.015 0.003 0.879 1 0.968
REM_da CR -0.2 -0.2 0.057 0.054 0.011 0.931 0.999 0.964

IS N1 300 51.406 10.502 10.236 1.301 0
IS N5 240 41.187 8.642 8.3 1.119 0
IS lam -0.0543 -0.054 0.022 0.022 0.005 0.888 0.988 0.761
IS CR -0.2 -0.195 0.086 0.084 0.02 0.872 0.982 0.704

IS_d N1 300 259.127 48.484 47.458 7.392 0.748
IS_d N5 240 208.346 39.598 39.027 6.823 0.76
IS_d lam -0.0543 -0.053 0.026 0.026 0.007 0.892 0.974 0.672
IS_d CR -0.2 -0.19 0.101 0.099 0.034 0.889 0.959 0.611

IS_da N1 300 295.255 57.31 55.822 10.413 0.879
IS_da N5 240 237.832 47.503 46.435 10.191 0.874
IS_da lam -0.0543 -0.053 0.031 0.03 0.008 0.893 0.957 0.583
IS_da CR -0.2 -0.187 0.12 0.117 0.045 0.897 0.936 0.51
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Table 5: Results of 500 simulations of a red deer population monitored for 5 years using 4
camera traps/km2 (see text). We present the same statistics for the same estimation methods as in
Table 1.

Method Param TrueValue MeanEst SE SEEst SE.SEEst Pcov PDec PsigD
REM N1 300 210.484 80.766 78.826 19.945 0.655
REM N5 240 167.931 65.534 62.97 15.982 0.658
REM lam -0.0543 -0.055 0.028 0.025 0.009 0.835 0.979 0.679
REM CR -0.2 -0.197 0.103 0.105 0.058 0.846 0.967 0.63

REM_d N1 300 299.684 104.803 113.481 27.342 0.902
REM_d N5 240 239.059 84.642 90.663 21.937 0.895
REM_d lam -0.0543 -0.055 0.028 0.025 0.01 0.835 0.979 0.673
REM_d CR -0.2 -0.197 0.103 0.105 0.059 0.88 0.967 0.645

REM_da N1 300 299.633 104.979 112.892 27.098 0.902
REM_da N5 240 238.704 84.816 90.233 22.085 0.903
REM_da lam -0.0543 -0.055 0.034 0.028 0.01 0.817 0.95 0.582
REM_da CR -0.2 -0.194 0.134 0.123 0.069 0.88 0.936 0.561

IS N1 300 51.964 20.603 19.837 5.205 0
IS N5 240 41.302 16.859 15.898 4.35 0
IS lam -0.0543 -0.056 0.05 0.043 0.017 0.828 0.878 0.423
IS CR -0.2 -0.185 0.199 0.227 0.348 0.816 0.85 0.376

IS_d N1 300 260.332 95.011 91.322 25.821 0.823
IS_d N5 240 208.851 80.911 74.454 22.685 0.808
IS_d lam -0.0543 -0.055 0.055 0.047 0.018 0.844 0.858 0.365
IS_d CR -0.2 -0.178 0.224 0.249 0.382 0.841 0.834 0.34

IS_da N1 300 295.397 110.777 106.145 33.628 0.862
IS_da N5 240 238.746 98.29 87.876 31.69 0.854
IS_da lam -0.0543 -0.054 0.065 0.054 0.02 0.824 0.819 0.328
IS_da CR -0.2 -0.164 0.277 0.325 0.726 0.813 0.791 0.289
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Table 6: Mean value (SD in parentheses) for various statistics calculated for each simulation of a
camera trap monitoring of a roe deer and red a deer population of 300 individuals with 100 camera
traps.

Roe Deer Red Deer
Number of associations 19172 (SD = 3476) 17951 (SD = 3667)
Number of encounters 684 (SD = 101) 1584 (SD = 279)
Travel speed (m.s−1) 0.0165 (SD = 0.0001) 0.0387 (SD = 0.0002)

Number of traps visited by an animal 0.459 (SD = 0.056) 3.492 (SD = 0.62)
Number of animals seen by a trap 1.376 (SD = 0.167) 10.475 (SD = 1.86)
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Figure 1: Simulation of the movement of a roe deer during a typical day, starting at
17:00 and ending at 16:59 the following day. The sequence 1 – 5 describes the simulation of
the activity cycle. The point 6 illustrates the simulation of the movement process itself,
zooming on the beginning of the day.
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Figure 2: Simulation process used : (A) simulation of the movements of a roe deer using
a model combining multiple Ornstein-Uhlenbeck process, including resting patches (green
points) within the movement (when the animals stay at the same place without moving at
all, (B) simulation of the detection process by a camera trap. The detection zone is
modelled as a circular sector with a radius of 20 m and an angle equal to 10 degrees.
Detection probability decreases with increasing distance from the trap, represented by
varying shades of grey (darker = lower detection probability, and black = no detection at
all). We also simulate the presence of trees that may limit the visibility within the
detection zone. The movements of the animal simulated on panel (A) are displayed in red
on this figure. The camera traps can capture the animals every second. The points
correspond to the detections of the animals (more numerous close to the trap).
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Figure 3: Precision of the estimation of population size in a monitoring of a roe deer
population with 300 individuals with 4 camera traps/km2, using stratified sampling. The
animals display a strong preference for the paths neighborhood on our study area (which
represents 38% of the study area), and we vary the proportion of traps in this habitat type.
We use two methods to estimate population size, the random encounter model (REM) and
the instantaneous sampling (IS). For each method, we estimate the population size: (i)
without accounting for imperfect visibility in the detection zones or the limited
detectability of the animals in the detection zones during their resting periods (REM and
IS), (ii) accounting for imperfect detectability of animals in the detection zones but not for
these resting periods (REM_d, IS_d), (iii) accounting for both imperfect detectability and
these resting periods (REM_da and IS_da)
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Figure 4: Estimated mean time spent by the roe deer in the paths neighborhood every
year, in our simulations of a camera trap monitoring over 5 years. Since the home-range
size of the animals increases with time, animals spend less time in average in “good”
habitats.
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