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A B S T R A C T

To facilitate the use of population counts as an index of population change, we describe a generalization of the
distance sampling methodology to analyze, in addition to distance to the observer, two other ways to estimate
imperfect detection probability: multiple observers and time-to-detection, in a flexible manner, meaning that not
all sites or years need to have distance information or be surveyed in the same way every year. We also account
for the effect of partially-observed individual covariates, to account for the effect of group size on detection
probability. Finally, we separate the probability of availability to detection from the probability of detection
itself. We perform a thorough, illustrated assessment of the pros and cons of this framework with simulations and
real case studies. First, we compare to simple linear models, illustrating the magnitude of the bias caused by
imperfect detection. Second, we compare to standard distance sampling, illustrating the bias caused by variation
in the probability of availability to detection. However, the availability to detection was weakly identifiable,
meaning that the ability to separate it from detection probability, and therefore debias the trend estimate,
depended on the data configuration. Combining distance with multiple observers and with time-to-detection
solved the weak identifiability in an applied case study. We recommend using both the type of analysis we
showcase, and a simple regression of the population count against time. Discrepancies between results from
simple and complex analyses can help identify sources of bias in the former and loss of precision in the latter
within the logistical constraints of local wildlife management schemes.

1. Introduction

The way animal populations change through time is an essential
part of environmental assessments, from local stock management
schemes to global biodiversity indices. Population counts often con-
stitute the base data for these assessments. Yet population counts are
well-known to yield a flawed picture of population dynamics because of
confounding factors such as imperfect detection and counting errors
(Anderson, 2003; Engeman, 2005; Gerrodette, 1987; Harris, 1986; Link
and Sauer, 1998). A broad range of methods have been proposed to
overcome this issue (Williams et al., 2002). Our first objective herein is
to quickly review these methods and some of the aspects we view as
shortcomings. Second, we address those shortcomings, by assembling
together several add-on features that improve the performance of dis-
tance sampling (Buckland et al., 2007, 1993). More precisely, we devise
a version of distance sampling where multiple observers can document
the detection process independently (Alldredge et al., 2008; Conn et al.,

2012; Nichols et al., 2000), where each counting session can be divided
into secondary sessions (Alldredge et al., 2007; Amundson et al., 2014;
Chandler et al., 2011), and where availability to detection is modelled
separately from detection itself (Burnham, 1993; Chandler et al., 2011),
thereby introducing a “robust design” (Kendall et al., 1997) philosophy
to distance sampling. We focus on studies that monitor population
trends across a few locations over the long term, as opposed to one-off
surveys of numerous locations, and aim to document the optimal
sampling design and the risk of flawed inference when not accounting
for confounding factors when estimating population trends.

However, complex models tend to have low statistical power (lower
precision) and to exhibit estimation issues when applied to sparse da-
tasets, meaning that special care needs to be taken at the sampling
design stage. In particular, we demonstrate a case of weak identifia-
bility, that is a case where the parameters are in theory all separately
estimable, but their relative contributions to the variance in the data
becomes impossible to separate as the data get sparser (Auger-Méthé
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et al., 2016; Barker et al., 2018; Fan et al., 2018; Garrett and Zeger,
2000). A straightforward example of weak identifiability is when at-
tempting to discriminate two categories of individuals based on their
size. The discriminatory power (model identifiability) weakens as the
difference between the two categories decreases below to the within-
category variance, i.e., the parameter identifiability depends on the
biological properties of the system (Garrett and Zeger, 2000). In our
case, the issue affected the separation of availability to detection and
detection when available, with consequences for the estimation of po-
pulation trends when availability was either very variable over time or
negatively correlated to detection.

2. A quick review of the methods to analyze patterns in
population dynamics using count data

2.1. The index of population size methodology (IPS)

Hereafter the acronym “IPS” refers to methodologies that infer
patterns in population dynamics using the expected count, i.e., the
product between the population abundance and the probability of de-
tection. Some IPS methods consist in averaging the count over several
replicates, i.e., they “average out” the sampling variance around the
expected count (Loison et al., 2006). These methods assume that the
expected detection probability is the same everywhere and every time,
and that most of the noise around the expected count is caused by
counting errors and other stochastic, constant-mean processes. Alter-
natively, one may rely on linear models of the count across space and
time. Linear predictors and random effects would then control for fac-
tors of variation in detection probability, such as observer proficiency,
vegetation type, or weather (Link and Sauer, 1998), thereby relaxing
the assumption that the expected detection probability is the same
everywhere and every time.

The main issue with the otherwise simple and effective IPS ap-
proach is that, if a factor jointly influences population abundance and
detection probability, it will not be possible to tease apart these two
influences (Anderson, 2003). Furthermore, the factors of variation in
detection probability may not be a priori known and quantified, pre-
venting their inclusion as explanatory variables. Lastly, count data are
often very noisy, in which case IPS methods can become unreliable or
request too many replicates to be tractable (Gerrodette, 1987; Harris,
1986).

2.2. Population reconstruction from individual-based data

Because of the above shortcomings of the IPS approach, researchers
have historically preferred to “reconstruct” the population dynamics
from estimates of vital rates, such as survival and fecundity (Caswell,
2001; Williams et al., 2002; see also Besbeas et al., 2002). In this ap-
proach, one uses individual-based data to compute, each year, the
balance between the births and deaths, and thereby the population
growth rate, yielding an index of population abundance relative to the
abundance at the start of the study. The main advantage of this ap-
proach is the ability to investigate individual and environmental var-
iation in vital rates, and thereby obtain realistic models of population
dynamics likely to yield reliable short-term predictions (Gauthier et al.,
2016). The main issue is the cost and field-intensiveness, and the fact
that the reconstructed abundance is conditioned on the initial popula-
tion estimate, i.e., it is an index relative to the initial population
abundance.

2.3. Unmarked methods

To avoid the shortcomings of the IPS and the cost and field-inten-
siveness of population reconstruction, the “unmarked” philosophy
(Fiske and Chandler, 2011; Dénes et al., 2015) is currently gaining in
popularity. This refers to methods that do not require individual-based

data from marked or otherwise recognizable individuals, but that still
separate the variance in the count data into a sampling (detection) and
a process (population dynamics) components. Distance sampling
(Buckland et al., 1993) is the first of these “unmarked” methodologies
to have been widely used for abundance and population trend estima-
tion. In distance sampling, the decline in recorded abundance with
distance to the observer is attributed to a decline in detection prob-
ability, and leveraged to correct the raw count data for imperfect de-
tection. Another seminal model underlying the unmarked philosophy is
the N-mixture model (Royle, 2004). In the N-mixture model, the sam-
pling variance across replicated counts is modelled as the outcome of a
binomial process whose success rate is the individual detection rate.

Perhaps because they were so successful that they have been tested
in a wide variety of situations, these two approaches have revealed a
few shortcomings. In particular, the N-mixture approach may yield
overestimated or infinite estimates of population size when detection
probability is small or when there are few replicates (Couturier et al.,
2013; Dennis et al., 2015; Veech et al., 2016). Recently, Barker et al.
(2018) explained this pattern as a case of weak identifiability. When the
data are sparse, solutions with large abundance and low detection are
as likely as solutions with low abundance and large detection. In ad-
dition, the N-mixture model requires that the detection probability is
constant across replicate counts. This arguably prevents the accurate
description of the sampling process (Barker et al., 2018), even if the
issue could in theory be resolved by adding an additional hierarchical
layer in the model (Zhao and Royle, 2019). Lastly, the N-mixture model
fitting procedure in the Bayesian framework is sensitive to the arbitrary
choice of a maximum potential population size, requiring some biolo-
gical insight that may not always exist prior to the analysis (Couturier
et al., 2013; Dennis et al., 2015).

Now regarding the distance sampling methodology, one of the lin-
gering issues is that crypsis and associated behaviors, vertical move-
ments such as diving or climbing trees, and temporary emigration out
the survey area leads some individuals to be temporally unavailable to
detection. They are still part of the population, but their detection
probability is temporarily zero. Buckland et al. (1993) introduced the
familiar g0 term to describe this availability probability. This parameter
must however be documented separately, for example with telemetry
data (Couturier et al., 2013; Marques et al., 2013), which can however
be quite costly and field-intensive. In addition, distance sampling as-
sumes that animal occurrences are equally likely at any point in the
study area, and in particular that the animals do not avoid the ob-
server’s location. If that assumption is not met, the estimated detection
function does not monotonically decrease with distance from the ob-
server nor start at =g 10 (Borchers and Cox, 2017). This discrepancy
can be accommodated by combining the analysis of forward and per-
pendicular distances in transect-based distance sampling (Borchers and
Cox, 2017). However, this type of improvement to the basic distance
sampling framework is not always easy to implement in the field. The
alternative solution, that we will further develop, is to combine distance
with additional “detection data” from double observer protocols
(Borchers et al., 2006; Sollmann et al., 2015) or time-to-detection
protocols (Amundson et al., 2014). Lastly, another lingering criticism of
distance sampling is that for a long time, available software im-
plementations were geared towards obtaining snapshots of the popu-
lation abundance, not monitoring fluctuations in abundance over
multiple years or sites. In particular, the software did not facilitate the
borrowing of information across years and sites.

3. Our model

The model was motivated by surveys of mountain ungulate popu-
lations in France, i.e., gregarious herbivorous large mammals that live
in rough terrain with impaired observer visibility, that are surveyed on
a yearly basis, from the ground, at a few representative locations, in-
itially to monitor how the populations recovered from historical over-
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harvesting, now mostly to adaptively manage their harvest and monitor
the effect of epizootics. Because we ended up assembling in a flexible
way many of the model features that we reviewed above, we expect our
framework to be relevant in other situations as well. We first review the
three types of “detection data” that we consider, then we describe the
likelihood function that allows their joint analysis, a few necessary post-
hoc manipulations to compute derived quantities, and finally we thor-
oughly discuss sampling design optimization, weak identifiability, and
statistical power, using application cases and simulations.

3.1. Three types of detection data for unmarked animals

The first type of detection data is distance to the observer – our
model is a generalization of the distance sampling model. In our im-
plementation, distance may be recorded exactly, or binned into classes
of approximate distance. Importantly, when counting animals that are
grazing the distant opposite slope of a valley, distance is not always
relevant as an information about detection probability, i.e., the visibi-
lity is sometimes good enough that all the animals have almost the same
detection probability. Therefore, it is interesting to be able to combine
distance sampling with other sources of information about detection, in
a flexible way that allows the joint analysis of locations where distance
is the main source of information about detection, and locations where
distance conveys little information.

The second type of detection data comes from the multiple-observer
protocol (Borchers et al., 2006; Nichols et al., 2000). For each detected
individual or group of individuals, the series of detection or non-de-
tection by several observers generates an history of detection akin to a
capture-recapture history. Distance then becomes an individual cov-
ariate associated to each individual capture-recapture history. In a
nutshell, the proportion of observers that detected an individual in-
forms the detection probability of that individual, and this can be
averaged across individuals for more reliable inference. Importantly,
we need to consider the risk that observers influence each other
(Borchers et al., 2006), e.g., by noticing when the others take out their
notebook or look intensively in a given direction. For this reason, we
advocate (and we implement in our model) a removal design for the
multiple-observer protocol (Nichols et al., 2000). We establish an order
among the observers. Observer n +1 can only add new detections that
observer n did not make. In addition to avoiding positive observer bias,
the removal design requires less post-session communication between
observers than the full multiple-observer protocol and is thus more
straightforward to implement in the field.

The third and last type of detection data is generated by a time-to-
detection protocol (Alldredge et al., 2007; a.k.a. removal sampling
protocol sensu Fiske and Chandler, 2011). For this protocol, we assume

that the time to detection scales to the instant detection probability. In
practice, we may discretize the detection process by dividing the count
period into secondary occasions. Then, the series of detections and non-
detections during the secondary occasions constitutes a capture-re-
capture history for each detected individual, similar to the robust de-
sign with within-session closure assumption (Kendall et al., 1997).
However, once an individual has been detected once, its probability of
detection is drastically improved because the observers now know that
this individual is present and roughly where it is. For this reason, we
also implement a removal design for the time-to-detection protocol.

In summary, we record the first secondary occasion at which an
individual is observed, the first observer in an ordered series who re-
corded it, and at which distance. But we can make do with just one or
two of these information bits.

3.2. Group size

Because mountain ungulates (our motivation for the new develop-
ment) often live in groups, the statistical unit in our model is the group
of animals, or the cluster sensu Buckland et al. (1993). One of our
concerns is the effect of group size on detection probability, and in
particular the way in which covariation between abundance and group
size may flaw the IPS methodology. In other words, if group size in-
creases with abundance (Pépin and Gerard, 2008; Toïgo et al., 1996),
and detection probability increases with group size, the observed po-
pulation growth rate may be artificially inflated, potentially leading to
over-optimistic management decisions. Each detected group is de-
scribed by two group covariates: the group size and the distance to the
observer. The group size data is considered error-free; there is no
counting error on individual groups, or partial availability of groups. To
deal with counting errors or partial availability of groups, see Clement
et al. (2017), but this feature is not supported in our framework.

3.3. Model likelihood

We denote the set of model parameters (Table 1) and Y the de-
tection data. Y is stratified across K sites, T years, Uk t, within-year visits
to site k in year t, Vk t u, , robust design-style secondary occasions within
visit u to site k in year t, and Ok t u, , observers. As noted above, Uk t, , Vk t u, , ,
and Ok t u, , can change across sites, years, and visits, allowing for a
flexible study design. For example =O 1k t u, , means that only one ob-
server participated in the survey of site k, year t, and visit u. The like-
lihood YL ( ) describes the probability to record Y as a function of .
For each detected group i, we know the site k, the year t, the visit u, the
secondary session vi, the observer oi, the distance di, and the group size
gi. From these data we can compute the probability Pk t u i, , , that the group

Table 1
Notation for the ‘chamois’ class of models.

Notation Meaning

Ck t u, , Total number of animal groups observed during the uth visit to site k in year (or other time unit) t
Nk t, Total number of animal groups using site k in year t

k t u, , Probability that a group is available for detection during the uth visit, following the “open distance” parameterization of (Chandler et al., 2011; Sollmann et al.,
2015).

p g d( , )k t o u v, , , , Detection probability by observer o during secondary session v of visit u, for a group of size g at distance d from the observer. In practice we use either using the
half-normal function with spread parameter Dk t o u v, , , , (half-detection distance) or a histogram-like piecewise function.

Uk t, Number of visits to site k in year t
Vk t u, , Number of secondary sessions during visit u
Ok t u, , Number of observers during visit u
Pr d k( ) Distribution of distances to the observer, including both the animals that eventually are detected, and the animals that are not detected, within site k. In our

framework, this term is meant to accommodate the typically irregular shape of the survey sites and the potential offset of the observers’ position relative to the
centroid of the sites. It is thus directly informed by the user rather than estimated. More generally, this term could be used to introduce variation in the population
density among the sites.

Pr g k t u( , , ) Distribution of group sizes in site k, during visit u. This includes both detected and undetected groups. In practice, we used a one-inflated negative-binomial
distribution with parameters k t u, , , µk t u, , , and k t u, , respectively for the proportion of groups of size 1 (solitary animals), the average size of groups of size > 1,
and the shape parameter of the negative-binomial distribution of groups of size > 1.
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was detected, as the product of four terms: the probability that the
group was available for detection, the probability that it was not de-
tected until observer oi, the probability that observer oi did not detect it
until subsession vi, and the probability that the observer oi eventually
detected it during subsession vi.

=
=

p g d p g d

p g d

P · (1 ( , )) ·[(1 ( , )) ]·

( , )

k t u i k t u
o

oi

k t u o i i
vi

oi

k t u oi i i
vi

vi

k t u oi i i

i vi

, , , , ,

Available to detection

1

1

, , ,

Not detected until observer

, , ,
1

Not detected until subsession

, , ,
Detected by o at (1)

The product between the first pair of brackets is replaced by a one if
=o 1i . All the notation is summarized in Table 1.
The product of all the Pk t u i, , , terms corresponds to the overall

probability to detect the groups that were detected, in the way they
were detected. Then we need to account for the groups that were not
detected. This is the only place where the population abundance enters
the likelihood. The challenge is however that the group size and dis-
tance from the observer are, obviously, not known for the groups that
were not detected. As is routinely done in this type of situation, we
tackled this as a simple extrapolation problem, by assuming that non-
detected groups were drawn from the same stochastic model as de-
tected groups, but that they were on average farther and smaller than
detected groups. We introduced the distribution of distances to the
observer, denoted Pr d k( ), and the distribution of group sizes, denoted
Pr g k t u( , , ). In the present implementation, Pr d k( ) only depended on
the configuration of the site. We informed it by a separate field of view
analysis in a GIS software. For Pr g k t u( , , ), based on recommendations
by Ver Hoef and Boveng (2007) and on the observation that there was
an excess of solitary animals relative to the negative-binomial dis-
tribution, we used a one-inflated negative-binomial distribution of
group sizes. We included the three parameters of that distribution in the
list of parameters to be estimated (Table 1).

Lastly, we implemented two ways to model the relationship be-
tween distance and detection probability. First, as is often the case in
practice (Miller, 2015), the link between detection probability and
distance could follow a half-normal function. The spread parameter,
a.k.a. half-detection distance, denoted Dk t o u, , , , was made to vary log-
linearly with group size. Alternatively, we also implemented a histo-
gram-like shape, i.e., a piecewise staircase function. In this case, the
effect of group size on detection probability was additive to the effect of
distance on the logit-log scale. In both cases, the result was the function
p g d( , )k t u o, , , giving the site-, year-, visit-, and observer-specific detection
probability as a function of group size and distance to the observer.
With all this notation, we can then write the probability that one group
went undetected as:

=

+
=

Q

p g d g k t u d k d g

(1 )

· (1 ( , )) Pr( | , , )Pr( | )d d

k t u k t u

k t u g d
o

Ok t u

k t u o i i Vk t u

, , , ,

Group was not available

, ,
1

, ,

, , , , ,

Group was available but not detected

(2)

The integration over all possible group sizes and distances to the
observer addresses the fact that the group size and the distance to the
observer are not known but are drawn from the same distribution as the
detected groups, after correcting for detection biases. In practice we
computed this integral using a numerical quadrature (a.k.a. Riemann
sum approximation). The probability that the total number of groups in
site k during year t is Nk t, can then be expressed as a binomial law, with
number of trials Nk t, , number of successes N Ck t k t u, , , where Ck t u, , is the
number of detected groups during visit u, and success probability Qk y u, , .
The complete joint likelihood over all sites, years, and visits is then
finally:

=
YL g k t u N

C N C
Q( | ) P ·Pr( | , , ) !

! ( )!k t u i

Ck t u

k t u i i
k t

k t u k t k t u
k y u
Nk t Ck t u

, , 1

, ,

, , ,

Detected groups

,

, , , , ,
, ,

, , ,

Undetected groups

(3)

Throughout, detection and availability probabilities can be made to
vary with site-specific covariates (e.g., elevation, land ownership), visit-
specific covariates (e.g., cloud cover, temperature), linear temporal
trends across years, and site- and time- random effects. Random effects
are however not made available in the enclosed R-package (but see cat
application case below).

Our model is a generalization of distance sampling because if we
remove the multiple observer and time-to-detection information
( = =O V 1k t u k t u, , , , ), if we fix all the k t u, , to one, and if we remove all the
dependencies on g, we arrive at a likelihood of the form explained by
Buckland, Rexstad, Marques, and Oedekoven (2015). By contrast, our
model does not belong to the N-mixture class of models because the
binomial error structure applies within, not across sites and visits.

To obtain the maximum-likelihood estimates of the model para-
meters, we find the minimum of logL Y( ). For that optimization we
recommend the genetic algorithm with derivatives (Mebane and
Sekhon, 2011), because in our experience there are many local minima
in the negative log-likelihood. The preferred combination of model
features should be selected using the Akaike Information Criterion
(Burnham and Anderson, 2002), although to our knowledge there are
no goodness-of-fit tests readily available for this type of model.

3.4. Post-hoc manipulations

The above model fitting procedure yields an estimate for the
number of groups Nk t, . To compute the population abundance, denoted
Mk t, , we multiplied the number of groups by the expected group size,
corrected for detection biases, using the following formula:

= +
= = =

=
+

=
+M g N C

g g k t u R g

g k t u R g
max ( max )

( Pr( , , ) ( ))

(Pr( , , ) ( ))k t
u Uk t i

Ck t u

i k t
u Uk t

k t u
g k t

g k t
,

1 , 1

, ,

,
1 ,

, ,
1 ,

1 ,

(4)

= =max g( )
u U i

C
i1 1

k t

k t u

,

, , is the maximum number of individuals counted in

site k during year t. R g( )k t, is the probability of not detecting a group of
size g but of unknown distance to the observer. R g( )k t, is computed with
an equation similar to Eq. (2). In practice, the sum over g was stopped
after a large g chosen so that g k t u R gPr( , , ) ( )k t, was negligible.

To estimate temporal trends in population abundance, we a poster-
iori regressed Mk t, against year t. We considered the random effect of
site k on the intercept, and we weighed the Poisson-distributed re-
gression by the inverse of the sampling variance of Mk t, . The slope of the
regression represents the log-linear temporal increase or decrease in
abundance. Tools for model building, model fitting, and post-processing
are provided in the R-package chamois for R (Supplementary Data file).

4. Simulation studies

4.1. Demonstrating bias in simpler methods

For this section, we designed a scenario specifically to challenge the
IPS methodology and fully illustrate its shortcomings. At the start of a
6-year period, 240 animals were equally distributed across 8 separate
sites. The abundance decreased in a similar fashion in all sites, reaching
a total of 80 animals at the end of the 6 years. By contrast, over the
6 years, the detection probability increased, in a way that would mask
the true decline in abundance. The half-detection distance increased
linearly from 150 to 665m and mean group size increased linearly from
1.7 to 3.2, while the log-scale effect of group size on the half-detection
distance was +0.5. The availability probability decreased from 0.80 to

G. Péron and M. Garel Ecological Indicators 106 (2019) 105546

4



0.70, which partly compensated the increase in detection probability
and created a complex pattern of variation. Each year, each site was
visited 3 times by 2 observers. The 8 sites were treated as spatial re-
plicates in the analysis.

These parameters values were purposely chosen so that the expected
population count slightly increased over the years, whereas the actual
population size decreased. Accordingly, the IPS methodology failed to
detect the underlying population decrease (Table 2).

This scenario was also expected to challenge the N-mixture ap-
proach, because the non-independence of animals in groups and the
two-step detection process (availability and detection) violated the bi-
nomial variance assumption. In addition, the simulated counts were
quite small especially at the end of the simulation, which the relatively
large simulated effort (24 replicates per year) may not adequately
compensate for. We tentatively analyzed the simulated datasets with
the N-mixture methodology. We used the unmarked package for R
(Fiske and Chandler, 2011), and specifically the option siteCovs of
the function unmarkedFramePCount to code for year effects in the
routine pcount. This way we directly estimated the temporal trend in
abundance as part of the list of parameters of the N-mixture model. The
performances of the N-mixture were slightly improved compared to the
IPS method, but still featured a large proportion of type I and type II
errors (Table 2). Type II errors (false negatives) likely stemmed from
the poor fit of the model to the data, and in particular the fact that we
specified a model that aggregated the effects of the temporal variation
in detection, in group size, and in availability to detection, instead of
separating them. Type I errors (false positives) likely stemmed from the
occurrence of unrealistic estimates due to the identifiability issues that
we reviewed above.

The simulation scenario was also expected to challenge the standard
distance sampling methodology, because the probability of detection at
distance 0 was below zero and varied over time. Nevertheless, we
tentatively implemented distance sampling using the Distance package
for R (Miller, 2015), and more precisely the ds function, with default
options for the shape of the decrease in detection with distance, and
using the region.table option to code for the different years, the
sample.table option to code for the different sites, and the obs.-
table option to code for the different visits (Miller, 2015). With this
procedure, we obtained one overall estimate of abundance per year,
which we then post-processed in a generalized linear model to estimate
the temporal trend. This overall performed very well despite the above-
mentionned caveats, with only very few type II errors to report. How-
ever, because temporal variation in availability was not modelled, the
magnitude of the population decline was, as expected, consistently
under-estimated (RMSE=35%).

The new methodology, which as a reminder is a generalization of
distance sampling, improved on the trend estimate (RMSE=15%) by
separating availability and detection. It however exhibited a slightly
larger rate of type II error than distance sampling (Table 2), despite

fully using the double observer data, indicating a loss of precision
caused by the added number of parameters to estimate.

4.2. Quantifying the loss of precision

The relatively large rate of type II error in our method indicates that
correcting for known sources of bias with our new framework comes at
a cost in terms of loss of precision. Therefore, the effort needed to fully
accommodate confounding factors, should any occur, ought to be an-
ticipated at the study design stage. To investigate this further, we si-
mulated a range of scenarios where the IPS methodology was expected
to perform well. That way, we could compare the statistical power of
our method to that of the simplest method with the lowest number of
parameters, providing a direct quantification of the loss of precision,
and a guideline for sampling design. We simulated K sites with initially
100 animals per site, so K*100 animals in total at the start of the si-
mulations. The population decreased by 5% per year over a 6-year
period. We parameterized the scenarios so that half of the decline was
accounted for by a decline in the number of groups per site and the
remaining half was caused by a decline in the number of animals per
group. Each year, O observers visited each site U times for 6 years. At
each visit, they divided the count in V=3 secondary occasions, fol-
lowing the time-to-detection protocol that we described under “Our
model” above. Observers did not record distance; instead, the inference
was entirely based on the time to detection and multiple-observer data.
Detection probability increased with group size with a slope of 0.1 on
the logit-log scale. The intercept of the detection-size relationship was
kept constant over the years. In other words, the only source of tem-
poral variation in nuisance parameters was through the change in group
size with year. We ran 100 simulations per combination of K, U and O.
We computed the proportion of replicates in which the population
decrease was effectively detected.

As expected, the IPS method performed very well in this scenario
with no nuisance besides nonstationarity and stochastic variance in
group size (Fig. 1). The loss of precision by our new method relative to
the IPS did not appear large enough to prevent real-world applications
(Fig. 1; red curves vs. blue curves). For example, monitoring 8 sites 3
times per year for 6 years was enough to be able to detect a 5% yearly
rate of decrease (Fig. 1). This is a sample size typical of many ungulate
monitoring schemes. Clearly, the IPS methodology would have reached
the same objective with a much smaller effort (3 sites monitored 4 times
per year over 3 years; Fig. A3). But it would not have been able to detect
the effect of confounding factors should any be present.

Another issue that these simulations put to the fore was weak
identifiability. When the availability probability was< 0.3 (very low),
the procedure converged towards a solution with = 1 and =p p.
The probability of availability was consistently over-estimated at
boundary one and that bias was propagated to the detection prob-
ability, which was under-estimated (Fig. A4a). This is a typical weak
identifiability issue, whereby the parameters φ and p are separately
estimable only when the data are dense. When p < 0.3, not enough
groups are detected. In Application case #2 (below), we demonstrate
that incorporating additional sources of detection data, as we advocate
in this study, resolved the issue in a real-life application.

Lastly, these simulations demonstrate that the double observer
protocol was never cost-effective in terms of precision compared to
doubling the number of surveyed sites or the number of replicates per
site.

5. Real study cases

5.1. Application case #1: Pyrenean chamois

This case study aimed at empirically comparing the new method to
the population reconstruction method. The latter is expected to perform
best so is used as a reference point. The objective is to demonstrate the

Table 2
Simulation study of the bias in simpler methods over 20 replicates. ‘IPS’ stands
for the Poisson regression of population counts. ‘Non-expected trend’ means
that the estimated population trend was positive (whereas the true simulated
one was negative). ‘Type I error’ means that the positive trend was statistically
significant. ‘Type II error’ means that the P-value of the population trend was
above 0.05, meaning that no definitive conclusion about population trend
would have been reached. ‘Trend RMSE’ is the % root mean squared error of the
estimated rate of population decline (log scale).

IPS N-mixture Distance New method

Non-expected trend 98% 42% 0% 2%
Type I error 54% 20% 0% 0%
Type II error 46% 42% 6% 16%
Trend RMSE >100% 85% 35% 15%
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good performance of the new method at a fraction of the cost of the
population reconstruction method. In the Bazès study area (foothills of
the Pyrenees mountains; 43.00°N, 0.23°W), the Pyrenean chamois
(Rupicapra pyrenaica) population has experienced a mass mortality
event in the summer of 2001 that was attributed to an intoxication with
an insecticide (Gibert et al., 2004). Since then, breeding success has
remained low. The monitoring program involved up to 27 visits per
year since 1998. At each visit, the distance sampling protocol was

applied from the same hiking trail each time. In the meantime, chamois
were captured and marked every year, and then marked individuals
were resighted during the population surveys.

When applying our new framework, we used the Akaike
Information Criterion to select the presence or absence of temporal
trends in detection probability, availability probability, and group size.
We also asked whether availability probability changed during the
2001 events, as would be expected if the mass mortality event was

Fig. 1. Quantification of the loss of precision in a scenario without any variance in nuisance parameters. Probability of not detecting an annual rate of change
(increase or decrease, at random) of 5% over 6 years, for various scenarios of detection probability p and availability probability φ using our new method. The grey
shading darkens when the probability of type II error increases. The bold red line is the 5% contour (right of the line, the probability of type II error is lower than 5%).
The white-dashed blue lines correspond to the 5% contour for the population index methodology (if these white-dashed blue lines are absent then the probability to
detect the trend was always > 95% using the index). X-axis: number of repetitions. Y-axis: number of survey sites. The framed plots indicate situations that
correspond to a 40% coefficient of variation, typical of mountain ungulate monitoring, even if the CV tends to get smaller than that with more replicates (Loison
et al., 2006). The same figures for the probability that a 10% annual rate of change over three or six years was detected with a 5% risk threshold are provided in Fig.
A1–3.
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associated to a change in movement rates.
When analyzing the capture-recapture data, we used two methods.

We used the Arnason-Schwarz-Gerard model (Arnason et al., 1991;
Schwarz and Seber, 1999) to estimate population size each year based
on the year-specific estimated detection probability for marked in-
dividuals and the number of detected individuals (marked and un-
marked). We also reconstructed the population trajectory using a ma-
trix population model (Caswell, 2001) with 10 age-classes. The
demographic parameters (a.k.a. vital rates) in the matrix population
model were estimated from the capture-recapture data with E-Surge
(Choquet et al., 2009). Further detail can be found in Richard et al.
(2017).

The model without temporal variation had 14.8 AIC points more
than the model with fully year-specific detection probability and an
effect of the 2001 events on availability probability. The half-detection
distance varied across years between 247 and 611m. The lowest de-
tection probabilities corresponded to years with staffing issues.
Availability probability was 0.57 (± standard error: 0.14) during
normal years and 0.87 (± standard error: 0.74) during the 2001 in-
toxication event, suggesting lower movement rates. Both our new
method and the two capture-recapture analyses yielded the same esti-
mated population trajectory (Fig. 2), indicating the good performance
of the unmarked approach in this case relative to the much more costly
mark-recapture approach. The two-way coefficients of determination
(r2) between the year-specific population size estimates from the three
methods were both 0.66.

5.2. Application case #2: Mediterranean mouflon

This case study was specifically designed to test the new framework
in the field. We wanted to quantify how the precision of the population
abundance estimate increased when we combined distance sampling,
multiple-observer, and time-to-detection in a single framework, com-
pared to when we used only one type of detection data. Incidentally, the
case study also yielded an unambiguous demonstration of how com-
bining multiple types of detection data resolved the above-mentioned
weak identifiability issue.

In 2014, Mediterranean mouflons (Ovis gmelini musimon xOvis sp.)
were counted at three locations from fixed points in the Caroux-

Espinouse national hunting and wildlife reserve (southwestern France;
43°38′N, 2°58′E). The environment was low scrub with forest patches.
On seven or eight occasions (depending on the site), two observers
conducted 15-min scans, that we divided into 3 successive secondary
sessions of 5min. They noted which observer first recorded the animals,
at what time, and at what distance, yielding 138 different detection
events of mouflon groups.

Discarding either the time-to-detection information or the double-
observer information led to a two to three-times increase in standard
errors (Fig. 3). The time-to-detection information improved precision
slightly more than the double-observer information. Based on these
results we rank the observation protocols by order of increasing pre-
cision as follows: distance sampling, time-to-detection, and multiple
observers. Importantly, when we discarded the time-to-detection in-
formation, the availability probability was estimated at boundary one.
In other words, we resolved the weak identifiability issue by collecting
time-to-detection information in this case.

5.3. Application case #3: feral cat

We chose this case study to illustrate the challenges associated with
temporal variation in nuisance parameters and the adequate perfor-
mance of the new analytical protocol even when only distance in-
formation is available. Feral cats (Felis silvestris catus) have been in-
troduced to the Kerguelen archipelago (southern Indian Ocean); their
abundance is a key information for a range of projects in community
ecology and conservation biology. We focused on one study area (the
2.8 km-long Pointe Morne transect; 49°22′S, 70°26′E) where the cat
population was surveyed on 19 occasions between 2013 and 2016 (and
still ongoing) using distance sampling. We considered only the adult
cats and did not use the information about the size of occasional family
groups. At each occasion, observers walked the transect back and forth
until they obtained at least 30 cat sightings, later reduced to 20 sight-
ings. They waited at least 45min between the back and the forth, and at
least two hours before starting again, sometimes the next day. We
treated each back-and-forth as a primary occasion sensu our model, but
introduced a slight modification to our model, so that the population
abundance remained constant across the up to 19 back-and-forth walks
that together constituted a sampling occasion sensu the field protocol.

Other model parameters were allowed to vary across primary oc-
casions following a Gaussian distribution, implemented and fitted to the

Fig. 2. Comparison of estimated chamois abundance in the Bazès study area,
with the Arnason-Schwarz-Gerard model fitted to resighting data from marked
animals (‘A-S-G’), with a 10 age-class population model with demographic rates
estimated from individual-based data (‘reconstruction’), and with our new
method.

Fig. 3. Comparison of the standard errors from our new method using various
combinations of distance sampling (‘Dist’), time-to-detection (‘Scans’) and
double-observer (‘DbObs’), in the mouflon case study. ‘G1’, ‘G2’, ‘G3’ stands for
the log of the number of undetected animal groups in each of three survey sites,
‘π’ is the proportion of groups of size 1 (logit-scale intercept and effect of site 1).
‘σ’ is the shape parameter of the negative-binomial distribution of group
sizes> 1, ‘μ’ is its mean, ‘p’ is the group detection probability (logit scale in-
tercept, effect of log-transformed group size and of site 1), and ‘φ’ is the
availability probability. Asterisks indicate missing standard errors because the
estimate was at boundary 1, i.e., weak identifiability.
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data with the Gauss-Hermite quadrature within a Nelson-Mead opti-
mization algorithm (Appendix B). These temporal random effects acted
on the log-transformed half detection distance and on the logit-trans-
formed availability probability. We used the AIC to select between
models r p r( ) ( ), p r(.) ( ), and p(.) (.), where and p denote avail-
ability and detection probabilities, respectively, a dot denotes a time-
constant model, and r denotes a time random effect. Each random effect
added a single parameter to the parameter count for the AIC. Note that
random effects are currently not available in the ‘chamois’ user inter-
face.

For comparative purposes we also applied the IPS methodology
(Poisson regression) and the standard distance sampling methodology,
which in this case meant pooling data together from up to 19 primary
occasions (back-and-forth walks). We acknowledge that the fact that
each sampling occasion would then last several days violates the as-
sumptions of the distance sampling methodology. Our objective was
indeed to determine whether this represented an issue or not, by
comparing the results from the standard distance sampling to the re-
sults from our new approach.

We obtained a more reliable and more precise estimate with the
new framework (Table 3: Distance vs. p r(·) ( )) because we borrowed
information across sampling occasions and we exploited the repeated
survey structure, instead of pooling data across primary occasions.
Thus, applying the standard distance methodology to primary occasions
that spanned over several days did not introduce a major bias, only a
loss of precision caused by a loss of information. In this case, contrary to
the other cases we presented above, our new framework thus made it
possible to increase precision by way of more efficient use of in-
formation, rather than lose precision by way of adding more para-
meters.

The IPS methodology underestimated the population trend com-
pared to the other methods (Table 3: IPS vs. Distance and r p r( ) ( )).
This is because of temporal variation in nuisance parameters, which the
IPS methodology did not correct for. Thus, this case study un-
ambiguously illustrates the importance of accurately representing
temporal variation in nuisance parameters when using population
counts to infer population trends. Here, the nuisance was mostly caused
by variation in half-detection distance, but in the previous sections we
illustrated the role of availability to detection as well.

In the present case, we could not separate the probability of avail-
ability from the detection probability (weak identifiability; p was esti-
mated at boundary 1). From the results of the mouflon case study and
the simulations, we recommend either implementing a double observer
protocol, changing the survey area so that it is possible to implement a
time-to-detection protocol, or drastically increasing the number of re-
plicates, in order to be able to identify p and assess whether temporal
variation in p may bias the inference in Table 3.

6. Discussion

The methods in this study build on previous efforts to jointly ana-
lyze several sources of “detection data” in studies of population abun-
dance and population trend: distance sampling, time-to-detection, and
multiple observers (Amundson et al., 2014; Chandler et al., 2011; Conn
et al., 2012; Fiske and Chandler, 2011). Motivated by studies into
mountain ungulates population dynamics, we identified a need for an
approach that worked for a small number of locations monitored over
long periods of time, when group size influenced detection and the rate
of temporary emigration out of terrain-limited survey areas varied over
time. In addition, long-term ecological monitoring schemes increasingly
need to adapt their sampling effort in the face of variation in financial,
institutional, and volunteer support, and as a result there is a need for a
flexible analytical framework. We do not recommend choosing flex-
ibility for the sake of it when designing a study. But, when variation in
sampling effort is inevitable, it is critical that analyses effectively ac-
commodate it. Furthermore, we implemented a fully expanded version
of the likelihood function, allowing the incorporation of partially ob-
served individual covariates and individual and temporal random ef-
fects, whereas previous approaches used closed-form likelihood func-
tions based on summary statistics (Fiske and Chandler, 2011). We
acknowledge that this decision is computationally costly: our im-
plementation is at least 10,000 times slower than a closed-form like-
lihood. It also requires careful care to avoid local minima in the like-
lihood. But with simulations and real case studies we demonstrated that
these features could be critical to control the effect of confounding
factors in population trends. Finally, a last source of concern is that the
bias/precision trade-off was not always in favor of our method (Fig. 1).
However, our simulation studies clearly showed that there are situa-
tions in which our method was the only one to yield unbiased results
about population trend, because the assumptions and data require-
ments of simpler approaches were not met (Table 2). Application case
#2 (mouflon), which we specifically designed to test the new approach
in the field, also clearly demonstrated that our new method solved a
weak identifiability issue, namely made it possible to separate the
availability and detection probabilities which otherwise would have
been confounded. When availability and detection covary through time,
we need to separate them to avoid biases in population trend estimates.

In our view, the loss of precision caused by the increased number of
parameters in our method relative to the IPS does not prevent the use of
the method in real-life management cases, especially when the loss of
precision is taken into consideration at the sampling design stage. We
however recommend applying both the IPS methodology and our new
method, maybe in a dashboard-like suite of indicators of population
change. Discrepancies between the IPS and the new method would
make it compelling that population trend estimation remains a difficult
task when the data are sparse at the beginning of a long-term program.
These discrepancies would quantify either the biasing effect of con-
founding factors, or the loss of precision associated with the increased
number of parameters in our new method. It is also possible to perform
a simulation-based statistical power analysis, as implemented in the
“chamois” R-package (Appendix B), to plan ahead the sampling design
and determine when the results from the new method are expected to
reach statistical significance depending on the biological parameters.
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