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Estimation of the age or age class of harvested animals is often necessary to interpret the condition and dynamics of wildlife 
populations. The mammalian eye lens continues to grow until death and hence the dry mass of the eye lens has com-
monly been used to estimate the age of mammals. The method requires the relationship between eye lens mass and age to 
be parameterized using individuals of known age. However, predicting age is complicated by the curvilinear relationship 
between eye lens mass and age. We used frequentist and Bayesian methods to predict the ages and age classes of harvested 
hog deer Axis porcinus from eye lens mass. Deer were tagged as calves and harvested 4–177 months later in southeastern 
Australia. Lenses were extracted, fixed and oven-dried. Of the five growth models evaluated, the Lord model best described 
the relationship between age and eye lens dry mass (R2  95%). The precision of age predictions obtained using the Lord 
model in a Bayesian mode of inference decreased with increasing eye lens dry mass, with the size of the 95% CI equaling 
or exceeding predicted age for hog deer  6 years. However, most predictions of hog deer age will have reasonable precision 
because few animals  6 years are harvested. Linear discriminant analysis had high predictive power for classifying hog deer 
to four widely-used age classes (juvenile, yearling, prime-age and senescent). The Bayesian method is recommended for 
inverse non-linear prediction of age and the frequentist linear discriminant analysis method is recommended for estimating 
age class. We provide tables of correspondence between hog deer eye lens dry mass and predicted age and age class. Our 
statistical methods can be used to estimate age and age class for other mammalian species, including from other ageing 
techniques such as tooth eruption-wear criteria.

Accurate estimation of the age of harvested animals is 
required for understanding the condition (e.g. age-sex spe-
cific body mass; Bonenfant et al. 2009) and dynamics (e.g. 
age-sex class composition; Gaillard et al. 2000, Williams 
et al. 2002) of wildlife populations. The mammalian eye lens 
continues to grow until death (Smith 1883, Krause 1934, 
Augusteyn 2007a) and hence the dry mass of the eye lens has 
commonly been used to estimate the age of mammalian spe-
cies (Lord 1959, Dudzinski and Mykytowycz 1961, Dapson 
1980, Mysterud and Østbye 2006, Augusteyn 2007b). The 
form of the relationship between age and the eye lens mass 
is similar for all mammal species studied, with an early rapid 
increase followed by slower increase throughout the life span 
that approaches an asymptotic maximum (Augusteyn 2008, 
2014). In contrast to tooth wear (Hamlin et al. 2000), the 
growth of the eye lens is unaffected by nutritional factors and 
gender (Augusteyn 2014). Because the mass of the lens may 

change post-mortem, the dry mass of fixed lenses is used to 
predict age (Augusteyn and Cake 2005).

Predicting the age of an individual from eye lens dry 
mass requires the species-specific relationship to be esti-
mated, and this must be done using known-age animals 
(Dapson 1980). The prediction of age from eye-lens dry 
mass is problematic because uncertainty in the relationship 
used for prediction increases as the asymptotic maximum 
is approached (i.e. uncertainty increases with age). The 
frequentist methods commonly used to estimate age from 
eye lens dry mass were reviewed by Dapson (1980). He 
noted that key assumptions of least-squares regression, a 
method widely used to estimate age from eye lens dry mass, 
may often be violated. The issue of properly accounting 
for uncertainties in predicted ages (e.g. as 95% confidence 
intervals) from non-linear inverse prediction was also high-
lighted. Recent computational advances mean that Bayes-
ian methods can now be applied to the challenging task 
of age estimation. A key advantage of Bayesian methods is 
that they provide a natural framework to properly account 
for uncertainties in the relationship between eye lens dry 
mass and the age of known-age animals when predicting 
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the age of an individual using non-linear inverse prediction 
(Gelman et al. 2004).

Knowing age class rather than age may be sufficient 
for the study and management of many harvested popula-
tions (Williams et al. 2002, Mysterud and Østbye 2006). 
In ungulate populations, the strong age-dependent variation 
in demographic variables (e.g. survival and reproduction) is 
usually assessed by discriminating among four age classes: 
juvenile, yearling, prime-age, and senescent (reviewed by 
Gaillard et al. 2000). Frequentist classification methods such 
as linear discriminant analysis (Fisher 1936, Lee et al. 2005) 
could be used to assign harvested animals to age classes 
according to eye lens mass, but to our knowledge these 
methods have not been applied to this problem.

Here we use Bayesian and frequentist methods to predict 
the ages and age classes of hog deer Axis porcinus harvested 
in southeast Australia. We first parameterize the relationship 
between eye lens dry mass and age using known-age individ-
uals. We next use non-linear inverse prediction in a Bayesian 
mode of inference to predict the ages of harvested deer from 
their eye lens dry mass. Finally, we use frequentist linear 
discriminant analysis to predict the age classes of harvested 
deer from their eye lens dry mass. Tables of correspondence 
between hog deer eye lens dry mass and predicted age and 
age class are provided for management purposes.

Methods

Study area

We conducted the study on the 1620-ha Sunday Island, 
in Corner Inlet, Victoria, southeast Australia (38°42′S, 
146°37′E). The island is approximately 1 km from mainland 
Australia and consists of a series of east–west sand dunes up 
to 15 m a.s.l. (Mayze and Moore 1990). The island’s vegeta-
tion is dominated by forest, primarily Melaleuca ericifolia, 
manna gum Eucalyptus viminalis, coast banksia Banksia inte-
grifolia, coast wattle Acacia longifolia, coastal tree tree Lep-
tospermum laevigatum, with an understory of bracken fern 
Pteridium esculentum (Mayze and Moore 1990).

Hog deer are native to the floodplain grasslands and 
forests of the major Asian river systems (Mayze and Moore 
1990, Dhungel and O’Gara 1996). The southeast Australian 
hog deer population is descended from 10 animals released 
at Corner Inlet in 1865 (Mayze and Moore 1990). For fur-
ther information on the study area and species see Mayze 
and Moore (1990).

Sunday Island has been managed for the hunting of hog 
deer since it was purchased by the Parapark Co-operative 
Game Reserve Ltd in 1965. From 1985–2009, approxi-
mately 30 calves were captured, ear-tagged and released 
annually. Calves were caught at night with the aid of a spot-
light and hand-held net during October–January (see Mayze 
and Moore 1990 for further information). The sex and age 
of each calf was recorded, with the latter always estimated by 
the same observer from the width of the annular ridge that 
commenced from the hairline of the hooves and progressed 
downwards as the hoof grew and the tips were worn away 
(Mayze and Moore 1990). Based on information from calves 
born in captivity on Sunday Island the ages are assumed 

to be correct to within two weeks (R. J. Mayze, Parapark 
Co-operative Game Reserve Ltd, pers. comm.). A uniquely 
numbered yellow sheep tag (Allflex FlockTags, < www.allflex.
com.au/flexiflocktags.htm >) was placed in both ears. Anti-
septic spray was applied to each ear and the calf immediately 
released.

Sunday Island has an autumn hunting season (Para Park 
Co-Operative Game Reserve 2014) and harvested deer are 
registered with the State Government (Department of Sus-
tainability and Environment 2009). The date of harvest is 
recorded for each deer.

Eye lens sampling protocol

We collected eyeballs from 111 tagged deer of known age 
harvested in the 2007–2010 hunting seasons (Table 1). Both 
eyeballs were removed as soon as possible after harvesting 
(always within 12 h), although two intact lenses could not 
always be recovered from each deer. Each eyeball was placed 
in a uniquely labeled vial and covered with 95% ethanol for 
 14 days. Lenses were subsequently extracted with a scalpel 
and placed on glass petri dishes and kept at room temperature 
for 24 h before being placed into an oven at 100°C. Lenses 
were weighed (g; to four decimal places) at 24-h intervals for 
five days with professionally calibrated Mettler AE260 scales. 
We used eye lens dry mass obtained at the fifth drying stage 
as the response variable in our analyses.

Statistical analyses

There was no significant difference between the mass of the 
left and right eye lens for the sub-sample of animals for which 
both lenses were available (n  96; paired t-test p  0.24 
at all five drying stages). We therefore included individu-
als with only one eye lens in our analyses. For individuals 
with two eye lenses we used the lens with the largest mass in 
our analyses because the other lens likely had a lower mass 
due to a problem occurring during the drying process (e.g. 
cracking). We did not expect differences in lens development 
between sexes (Augusteyn 2014) and therefore pooled data 
from males and females for all analyses.

We first evaluated the functional relationship between 
eye lens dry mass and age of animals harvested using five 
non-linear models previously used for describing asymptotic 

Table 1. Numbers of known-age hog deer (males and females 
pooled) harvested at Sunday Island, southeast Australia, 2007  2010, 
that were included in our study.

Age class (years) n

0 23
1 20
2 12
3 10
4 19
5 9
6 5
7 3
8 3
9 2
 10a 5
Total 111

aThe oldest individual was a female aged 14 years.
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growth: Lord, Richards, monomolecular, Gompertz, and 
logistic growth models (Winsor 1932, Lord 1959, Richards 
1959, Dudzinski and Mykytowycz 1961, France et al. 1996; 
Table 2). We used Akaike’s information criterion with sec-
ond-order adjustment (AICc) to correct for small-sample 
bias, and Akaike weights (wi) to identify the relative support 
for each of the five models (Burnham and Anderson 2002).

We next fitted the most parsimonious model (i.e. Lord 
model) using Bayesian methods. A Bayesian model provides 
a natural and flexible way to account for uncertainty when 
computing inverse predictions of age from a given eye lens 
dry mass, which is problematic using frequentist methods 
(reviewed by Dapson 1980). The Lord model was formu-
lated as a non-linear model linking expectation m of the lens 
mass y to age x, with y a random variable following a normal 
distribution N(m, s):

y  m  ϵ,
ϵ ~ N(0, s)

µ γ
β
α=

−
+





e x

Bayesian methods assume prior distributions for model 
parameters and use Bayes’ theorem to derive the posterior 
distributions of parameters (Gelman et al. 2004). The four 
values to be estimated for the Lord model are g, b, a and the 
residual standard deviation s. An estimated a value greater 
than the gestation period in hog deer (approximately 230 
days or 0.62 years; Mayze and Moore 1990) would indicate 
that pre-natal growth of the lens was faster than post-natal 
growth and that another growth model should be used for 
the pre-natal period. In the absence of data for the pre-natal 
period we estimated a rather than fixing it (Augusteyn 
2007b), thus imposing the same growth function pre- and 
post-birth. This procedure enabled the best fit of the model 
to be obtained with available data, the purpose of which was 
to optimize the prediction of animal age from lens dry mass. 
We used numerical methods based on Markov chain Monte 
Carlo (MCMC) simulations to derive posterior distribu-
tions of a, b, g and s. The following uninformative prior 

distributions were used: normal for b with a mean of 0 and 
a variance of 1000, and uniform for a, g and s with values 
ranging between 0 and 100. An initial burn-in of 50 000 
iterations was used, and posterior distributions of parameters 
were based on 50 000 more iterations. We used three chains 
to check for the stability of posterior distribution estimates 
using Gelman and Rubin’s convergence diagnostic (Gelman 
and Rubin 1992).

For the following, consider q the vector of model param-
eters and residual variance, and D the data. The Bayesian 
approach allows computation of:

[q|D] ∝ [D|q][q]

We were interested in computing probability xn (age) given 
yn (eye lens dry mass) and q. Therefore:

[xn|yn, q, D] ∝ [yn|xn, q, D][xn|q, D]

We assumed that neither the data nor the parameter esti-
mates influence the probability of xn and that xn has uni-
form distribution between 0 and 20 years (i.e. maximum age 
observed in captive populations; Mayze and Moore 1990):

[xn|q, D]  [xn]

xn ∼ U(0, 20)

We also consider that [yn|xn, q, D] followed a normal distri-
bution with expectation mn  ge(b / (xn  a)) and stan-
dard deviation s so that:

[xn|yn, q, D] ∝ e{ 0.5((ynge(b / (xn  a))) / s)²}

We did not know q but were able to obtain its posterior 
probability distribution (i.e. [q|D]). Hence,

[xn|yn, D] ∝ ∫q[xn|yn, q, D][q|D]

We estimated [xn|yn, D] as follows. For each q* generated 
by the MCMC, and given yn, we randomly sampled xn

* in 
the probability distribution of [xn|yn, q*, D] by using the 
ratio-of-uniform method (Gilks 1996). We repeated this 
approach for each value of q* generated by MCMC. Finally, 
we computed for the distribution of xn, for a given yn, the 
median and 95% credible interval (i.e. the 2.5% and 97.5% 
quantiles).

We next used linear discriminant analysis (Fisher 1936, 
Lee et al. 2005) to predict the probability that a harvested 
hog deer is from an age class using their eye lens dry mass. 
We distinguished four biologically important age classes 
(reviewed by Gaillard et al. 2000) for age estimation: juve-
nile ( 1 year), yearling (1–2 years), prime-age (2–7 years) 
and senescent ( 7 years). We assessed the predictive power 
of the linear discriminant model using 2:1 cross-validation 
(i.e. two-thirds of the data were used for building the lin-
ear discriminant model and one third was used for testing 
the predictive power of the model). Using leave-one-out 
cross-validation to assess the predictive power of our linear 
discriminant model provided similar results. We performed 
bootstrap simulations to estimate mean success rate based 
on 50 000 linear discriminant functions built from 50 000 
random samples using two-thirds of the data set. Lower 
and upper 95% bounds were computed from the 2.5% and 

Table 2. The five growth models fitted to the relationship between 
age and lens mass in hog deer harvested at Sunday Island, southeast 
Australia, 2007–2010. K, number of estimated parameters; AICc, 
Akaikes information criterion; wi, Akaike weight. In each of the five 
models, g is the asymptotic eye lens dry mass, a is the natal eye lens 
dry mass (except for the Lord model in which it corresponds to the 
length in years of the pre-natal growth period), and b is the relative 
growth rate of the eye lens dry mass. The Richards model includes 
an additional shape-determining parameter, m, that locates the 
inflection point. Note that when m   1 the Richards model is the 
monomolecular model, when m  0 it is the Gompertz model and 
when m  1 it is the logistic model. For further information on these 
models see Winsor (1932), Lord (1959), Richards (1959), Dudzinski 
and Mykytowycz (1961), and France et al. (1996).

Model name Structurea K ∆AICc wi

Lord ge(b/agea) 4 0.00 0.91
Richards ga/(am(gmam)(eb age))1/m 5 4.60 0.09
Monomolecular g(ga)eb age 4 12.18 0.00
Gompertz ge( ln(g/a)eb age) 4 22.15 0.00
Logistic ga/a(ga)eb age 4 32.42 0.00

aAge is the postnatal age.
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[0.0–17.6%]) classes had low error rates. This linear discrim-
inant model enables biologists to obtain the posterior prob-
ability that a harvested animal is from a given age class from 
its eye lens dry mass (Supplementary material Appendix 4 
Table A2). For example, hog deer with an eye lens dry mass 
of 0.520 g had a posterior probability of 0.99 of being in 
the senescent age class and a posterior probability of 0.01 
of being in the prime-age class. A hog deer with an eye 
lens dry mass of 0.365 g had almost the same posterior 
probability of being in the yearling (0.48) or prime-age 
(0.52) class, and the Bayesian–Lord model predicted that 
the animal was 2.57 years old (95% CI  1.8–3.7; Supple-
mentary material Appendix 3 Table A1). A deer with an 
eye lens dry mass of 0.370 g had posterior probabilities 
of 0.33 and 0.67 of being in the yearling and prime-age 
classes, respectively. A deer with an eye lens dry mass of 
0.360 had posterior probabilities of 0.63 and 0.37 of 
being in the yearling and prime-age classes, respectively. 
This example indicates how a small change in lens mass 
(0.05 g) substantially changes the posterior probabilities in 
favor of one class or the other due to the high discrimina-
tory power of the function.

97.5% quantiles of the distribution of the error rates. The 
same priors for being in a given age class were used during 
analyses and corresponded to the class proportions for the 
overall dataset. These priors should therefore represent a 
typical sample of harvested animals.

We performed all analyses using R 3.0.2 (< www.r-project.
org >). AICc values and non-linear least-squares estimates of 
model parameters were obtained using the Gauss–Newton 
algorithm (Bates and Watts 1988). Bayesian model fitting 
and model diagnostics such as the convergence of MCMC 
chains (Gelman and Hill 2007) were performed using the 
libraries rjags, coda and Runuran (Plummer et al. 2006, 
Leydold and Hörman 2012, Plummer 2014). Linear 
discriminant analysis was performed using the lda function 
in the MASS library (Venables and Ripley 2002).

Computer code and data availability

The R script for implementing all models is provided in Sup-
plementary material Appendix 1. All supplements are available 
online at < www.wildlifebiology.org/appendix/wlb-00185 >. 
Data associated with this paper (“hog.txt” in Appendix 1) have 
been deposited in the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.0r31r >. (Forsyth et al. 2016).

Results

Of the five growth models (Table 2, 3) considered, the Lord 
model best described the relationship between age and eye 
lens dry mass (wi  0.91). The next best model was the Rich-
ards model (wi  0.09). The monomolecular, Gompertz and 
logistic models all had negligible support (wi  0.00). The 
Lord model provided a good fit to the data (R2  0.953, 
Fig. 1), with no systematic departure of observed and fitted 
values (Supplementary material Appendix 2 Fig. A1).

The precision of age predictions obtained using the Lord 
model in a Bayesian framework decreased with increasing 
eye lens dry mass (Fig. 2, 3), with the size of the 95% cred-
ible interval equaling or exceeding predicted age for hog 
deer  6 years. A table of correspondence between eye lens 
dry mass and predicted age (with 95% credible intervals) is 
provided for management purposes (Supplementary material 
Appendix 3 Table A1).

A linear discriminant model based on age classes had 
high predictive power (mean error rate [95% CI]  2.8% 
[0.0–8.3%]). Juvenile (0.0% [0.0%–0.0%]) and senescent 
classes (0.0% [0.0–0.0%]) were discriminated without error, 
whereas yearling (5.4% [0.0–20.0%]) and prime-age (5.9% 

Table 3. Parameter estimates (SE) for the five growth models fitted to assess the relationship between age (years) and lens mass (g) in hog deer 
harvested at Sunday Island, southeast Australia, 2007–2010. For model structures see Table 2. In all models, g is the asymptotic eye lens dry 
mass, a is the natal eye lens dry mass (except for the Lord model in which it corresponds to the length in years of the pre-natal growth period), 
and b is the relative growth rate of the eye lens dry mass. The Richards model includes an additional shape-determining parameter, m, that 
locates the inflection point.

Model name g a b m

Lord 0.578 (0.012) 1.362 (0.178) 1.767 (0.177)
Richards 0.537 (0.019) 0.097 (0.106) 0.165 (0.049)  2.754 (0.548)
Monomolecular 0.504 (0.007) 0.182 (0.007) 0.326 (0.023)
Gompertz 0.495 (0.007) 0.197 (0.006) 0.425 (0.027)
Logistic 0.488 (0.006) 0.207 (0.006) 0.530 (0.032)
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Figure 1. Growth of lens mass (g) in male (filled circles) and female 
(open circles) hog deer of known ages harvested at Sunday Island, 
southeast Australia, 2007–2010. The solid line is the fitted Lord 
model, and the dashed lines are the upper and lower 95% confi-
dence bounds.
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A Bayesian approach is particularly suited to the estimation 
of age from eye lens mass because it allows for coherent expres-
sions of uncertainty about all known quantities and does not 
rely on large samples for validity of inference, with prediction 
made using the posterior predictive distribution (Gelman et al. 
2004). The Bayesian approach provides a 95% credible interval 
for the predicted age for any eye lens mass, uncertainty that 
should be incorporated in population modeling (Williams et al. 
2002). The precision of age predictions obtained using inverse 
prediction from the Lord model decreased with increasing eye 
lens dry mass. The increasingly poor precision for heavier eye 
lenses was due to the curvilinear relationship between age and 
eye lens dry mass (Dapson 1980, Mysterud and Østbye 2006). 
However, most estimates of hog deer age will have reason-
able precision because few animals  6 years are harvested in 
southeast Australia ( 12%; Table 1).

Given the poor precision of estimated ages for heavier eye 
lens dry masses, in some situations it may be more relevant 
to use classification methods to assign individuals to age 
classes that have biological and/or management relevance 
(e.g. when constructing stage-based matrix models; Williams 
et al. 2002). Linear discriminant analysis assigned hog deer 
to the oldest (i.e. senescent) age class without error, a major 
advance over the imprecise predictions for older animals from 
the Lord model. Many classification methods could poten-
tially be applied to the estimation of age class from eye lens 
dry mass (reviewed by Lee et al. 2005). Preliminary analyses 
not reported here revealed that linear discriminant analy-
sis performed better than quadratic discriminant analysis, 
mixture discriminant analysis, support vector machine and 

Discussion

Our analyses have advanced the many previous attempts to 
estimate the age of individual mammals from eye lens dry 
mass in three main ways. First, we used information theo-
retic methods (Burnham and Anderson 2002) to identify the 
growth model that best explained the relationship between 
age and eye lens dry mass (i.e. the Lord model) using a large 
sample of known-age hog deer. Second, we fitted the Lord 
model in a Bayesian framework to properly account for 
uncertainty (Gilks 1996, Gelman et al. 2004) when using 
inverse prediction to estimate the age of harvested animals 
from their eye lens dry mass. Third, we used linear discrimi-
nant analysis (Fisher 1936, Lee et al. 2005) to estimate the 
probability that a harvested animal is from each of four age 
classes (i.e. juvenile, yearling, prime-age or senescent) used 
for deer population management (Gaillard et al. 2000).

The eye lens grows throughout the life of a mammal, but 
the rate of growth declines with increasing age (Augusteyn 
2008, 2014). Hence, many models could potentially 
explain the curvilinear relationship between age and eye lens 
dry mass (reviewed by France et al. 1996). Our informa-
tion theoretic approach showed that the Lord model (Lord 
1959, Dudzinski and Mykytowycz 1961) best explained the 
relationship between age and eye lens dry mass in hog deer, 
although there was some support for the Richards model. 
Further work is required to determine if the Lord model 
is the most parsimonious explanation of the curvilinear 
relationship between age and eye lens dry mass for other 
mammalian species.
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Figure 2. Ages of hog deer predicted from their eye lens dry mass using the Lord model in a Bayesian mode of inference. The filled circles 
are the data and the shaded area is the 95% credible interval.
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years is required then a Bayesian mode of inference is rec-
ommended because it provides a natural and flexible means 
of obtaining inverse, non-linear predictions (Gilks 1996, 
Gelman et al. 2004), overcoming the issues associated with 
frequentist solutions (Dapson 1980) to this problem. How-
ever, if only the age class (e.g. juvenile, yearling, prime-age 
or senescent) is required then frequentist linear discriminant 
analysis (Fisher 1936) is recommended because it has high 
predictive power and is straightforward to implement. These 
methods can be used to estimate age and age class for other 
mammalian species, and could be applied to other mamma-
lian ageing techniques such as tooth eruption-wear criteria.    
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