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Abstract Numerous ecological studies, including of the

polar environment, are now using the remotely sensed

normalized difference vegetation index (NDVI, e.g.

PAL-NDVI or MODIS-NDVI) as a proxy of vegetation

productivity rather than performing direct vegetation

assessments. Even though previous data strongly suggested

a saturation of NDVI at high biomass values, few studies

have explicitly included this characteristic in the modelling

process. Here, we developed a generalized non-linear

model to explicitly model the relationship between tem-

poral variations of NDVI (Pathfinder AVHRR Land 8 km

dataset) and empirical field data. We illustrated our

approach on the Kerguelen archipelago by using a green

biomass index (point-intercept protocol) sampled at a

small scale relative to PAL-NDVI data, and in presence

of spatial (water) and temporal (cloud contamination,

snow) heterogeneity, i.e. field conditions encountered in

many ecological studies. We showed a strong relationship

(rpred.obs = 0.89 [0.77; 0.95]95%) between this index and the

seasonal component of NDVI time series (NDVIcomp).

Despite the absence of lignified species in the stand, the

NDVIcomp reached an asymptote (0.54 ± 0.05) for high

values of green biomass index stressing the need to account

for non-linearity when relating NDVI and plant measure-

ments. We provided here a new methodological framework

to standardize comparisons between studies assessing

performance of NDVI as a proxy of vegetation data.
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Introduction

Normalized difference vegetation index (NDVI) from

remote sensors, most often onboard satellites, is now

commonly used by ecologists as a proxy for vegetation

productivity (Pettorelli et al. 2005). Previous studies have

related NDVI values and metrics derived from NDVI time

series to different canopy attributes such as net primary

production (NPP) (Tucker et al. 1981, 1983; Box et al.

1989; Paruelo et al. 1997), percentage of absorbed photo-

synthetically active radiations (APAR) (Asrar et al. 1984;

Sellers et al. 1992), leaf area index (LAI) (Waring 1983;

Tucker et al. 1986; Gilabert et al. 1996), evapotranspira-

tion (Box et al. 1989) and plant biomass (Tucker et al.

1985; Diallo et al. 1991; Persson et al. 1993; Hobbs 1995).

Based on such findings, NDVI has then been used to

describe vegetation pattern (Sinclair et al. 1971; Tucker

1979; Aragón and Oesterheld 2008; Lobo et al. 2008), to

explore ecosystem functioning (Lloyd 1990; Reed et al.

1994; Hunt et al. 1996; Mysterud et al. 2007) and

responses to global changes (Penuelas and Filella 2001;
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Gong and Ho 2003; Guo et al. 2008), including arctic areas

(Hope et al. 2005; Jia et al. 2006; Raynolds et al. 2008;

Verbyla 2008).

Obtaining empirical vegetation data over large spatio-

temporal scale is costly and time consuming. In sub-

Antarctic area, this has so far been limited both by logistical

constraints and by extreme climatic conditions often

leading to short and local time series. As a consequence,

numerous studies are now using NDVI as a proxy of vege-

tation productivity instead of performing direct vegetation

assessments (e.g., Andersen et al. 2004; Garel et al. 2006;

Pettorelli et al. 2007; Ryan et al. 2007; Tveraa et al. 2007;

Wittemyer et al. 2007).

Studies focusing on the relationships between NDVI

values and biophysical parameters put forward differ-

ences according to sites, stands and NDVI metrics

(Goward et al. 1985; Tucker et al. 1985; Box et al. 1989;

Hobbs 1995; Gilabert et al. 1996; Schino et al. 2003).

This emphasizes the need to validate NDVI data before

using it as a proxy of a vegetation productivity. These

prior studies also reveal some discrepancies regarding the

shape of these relationships [e.g., quadratic, log-linear,

linear relationships between NDVI and vegetation bio-

mass see Hobbs (1995), Gilabert et al. (1996), Schino

et al. (2003), respectively]. However, due to the variety

of the statistical approaches used, it remains unclear

whether these discrepancies reveal true biological

differences, such as differences in plant community

characteristics, or methodological concerns. More spe-

cifically, NDVI is expected to saturate for high biomass

values as it represents the greenness of the two dimen-

sional covering of vegetation rather than plant biomass

(Hobbs 1995). Such a process should lead to a non-linear

relationship between NDVI and biomass data. However,

few studies so far explicitly included this characteristic in

the modelling process (e.g. Goward et al. 1985; Tucker

et al. 1985; Schino et al. 2003), as they also often did not

account for the non-normal distribution of the biophysical

parameters studied.

The aim of our study was to provide a unified statistical

framework for modelling the relationship between time

variations of NDVI, and/or metrics derived from NDVI

time series, and field vegetation data. We used an empirical

generalised non-linear model that explicitly included the

saturation of NDVI (i.e., without data transformation) to

predict temporal variations in a green biomass index from

NDVI time series of the Pathfinder Advanced Very High

Resolution Radiometer (AVHRR) Land (PAL) 8 km res-

olution database. We illustrated our approach with a case

study on a coastal area of the Kerguelen archipelago. We

used field vegetation data based on ‘‘point intercept’’

principle. Methods using this principle have been com-

monly used in vegetation studies as a reliable linear proxy

of plant biomass (Jonasson 1988; Frank and McNaughton

1990; Bråthen and Hagberg 2004) and have been suc-

cessfully applied for habitat monitoring of animals

populations (e.g., Tixier et al. (1997) in roe deer Capreolus

capreolus, Adrados et al. (2003) in red deer Cervus ela-

phus, Bråthen et al. (2007) in reindeer Rangifer tarandus).

As aslo often encountered in polar environment and in

many field studies, our vegetation data were sampled at a

small spatial (*10 m2) and temporal (3 years) scales rel-

ative to PAL-NDVI data (64 km2), and on both spatially

(water-vegetation, see Fig. 1) and temporally (cloud con-

tamination, snow) heterogeneous pixels. In these conditions,

we illustrated how our model can be used to assess the

predicting power of NDVI times series on time variations of

a green biomass index.

Materials and methods

Study area

The study area (Molloy: 49.36� S–70.06� E, 0–150 m asl,

Fig. 1) is located in ‘‘Baie du Morbihan’’ on the eastern

part of the Grande Terre Island (6,675 km2), which is the

main island of the Kerguelen archipelago.

Climatic conditions are cold, wet and windy. For the

period 1977–1986, the average annual temperature was 4.9

±0.2�C (Météo-France, Port-aux-Français). For the same

period, the precipitations occurred frequently (on average

187 ± 25 days per year) with a mean of 762 ±136 mm per

year. There is on average 53.9 ±13.4 days with snow on

the soil per year. Due to frequent (133 ±20 days per year

of wind greater than 24 m s-1) and strong winds (monthly

maximum average 45.8 ±3.8 m s-1 but can reach up to

69 m s-1), the nebulosity and water vapour concentrations

remains high during most part of the year. The climate

dynamics has an annual cycle (November-November,

passing through the current January). We can distinguish

two seasons per year: (1) the ‘‘Spring–Summer’’ from

November to April and (2) the ‘‘Autumn–Winter’’ from

May to October.

There were only non-lignified plant species on the

Kerguelen archipelago. A large part of the study area was

covered by an homogeneous stand of two perennial spe-

cies, Acaena magellanica (Rosacae) and Taraxacum

officinale (Asteracae). A. magellanica can reached 40 cm

high and forms a very dense layer of vegetation (Boussès

1991). In summer the cover of A. magellanica is greater

than 75% and the cover of T. officinale (commonly called

Dandelion) was between 10 and 25%. Remaining parts of

the study area were dominated by bare soil or were com-

posed of smalls species (\10 cm, cover \10%) such

as Poa kerguelensis, P. annua, Ranuculus biternatus or
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Sagina procumbens. Above 300 m asl, the vegetation is

only present in form of small patches.

Data collection

Empirical field data (from Boussès 1991) were collected

monthly (the day of the month of the survey was not

available) in the field from February 1985 to February

1988, according to the point intercept protocol (Forgeard

and Chapuis 1984). Three transects of 3.5 m long were

randomly placed and delimited by wood sticks. Seventy

points were evenly spaced 5 cm along the transect. A

graduate stick of 100 cm was vertically lowered at each

point. This stick was graduated by increment of 5 cm.

The observers (n = 3) counted the presence of at least

one contact between the focal species and the stick for

each increment. The results were expressed as the total

number of contacts over layers and transects for both A.

magellanica and T. officinale. Based on previous studies

we assumed that the time variations in numbers of

intercept points is a linear proxy of time variation in

green biomass (McNaughton 1979; Jonasson 1988; Frank

and McNaughton 1990; Boussès 1991; Bråthen and

Hagberg 2004).

From the NOAA1/NASA2 PAL 8 km dataset archived at

the Goddard Earth Sciences, Distributed Active Archive

Center (GES-DAAC), we extracted the NDVI spanning the

temporal resolution (month) of field data. Using monthly

composite images contribute to reduce the amount of

clouds and dust in the data (Holben 1986). Although this

dataset was no longer available (acquisition period: 1981–

2001), it was the only one freely and easily available for

our study site and time period considered (see Agbu and

James 1994; Pettorelli et al. 2005). For further details on

the PAL data set and processing, see e.g., Agbu and James

(1994).

As the study site is located in the top left corner of a

NDVI pixel, we used the two lower nearby NDVI pixels

(pixels 3 and 4) of this one to ensure that NDVI data were

representative of the vegetated part of the study area (see

Fig. 1). We have also performed the subsequent analyses

Fig. 1 Location of the study

site (black point) and of the four

NDVI pixels (centre of pixel 1:

49.32�S–70.04�E, pixel 2:

49.32�S–70.15�E , pixel 3:

49.39�S–69.99�E, pixel 4:

49.39�S–70.09�E). Only pixels

3 and 4 are retained to perform

the analysis but note that

pooling the four pixels give

qualitatively the same results.

The Grande Terre Island of the

Kerguelen archipelago is in

light grey. Solid black lines
represent contour lines

1 National Oceanic and Atmospheric Administration.
2 National Aeronautics and Space Administration.
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using any combination of the four pixels including the

study area (see Fig. 1) and have obtained qualitatively the

same results (not presented here) as NDVI values were

highly correlated among these 4 pixels (r from 0.94 to

0.97). These results corroborate the homogeneity of the

study area and the spatial consistence of NDVI time series

despite the presence of water in the pixels. Moreover, it

suggests that the saturation of NDVI values (see ‘‘Results’’)

is not due to the presence of large water body in the two

pixels used (pixels 3 and 4; see ‘‘Discussion’’, and Chen

1999).

We have explored vegetation patterns by computing the

NDVI (Reed et al. 1994; Myneni et al. 1995) based on

Eq. 1:

NDVI ¼ qnir � qred

qnir þ qred

ð1Þ

where qnir and qred are, respectively, the reflectance mea-

surements in the red and the near infra-red part of the

electromagnetic spectrum.

To reduce the effect on the data of both, atmospheric

disturbances and spatial heterogeneity due to the presence of

large water body in the two pixels used (Fig. 1), we com-

puted an additional NDVI time series (called NDVImax) by

selecting the maximum NDVI value between these two

pixels for each month (Holben 1986). Because a negative

NDVI value means no vegetation activity, we replaced

negative NDVImax values (n = 3: -0.0008, -0.0653 and

-0.003) by 0 (Beck et al. 2006).

Statistical analyses

Empirical field data used in this study were sampled at a

small scale relative to NDVI and at unknown date in the

month. Moreover, field measurements were based on the

two dominant species of the stand and were not randomly

sampled within the NDVI pixel. Consequently, empirical

field data cannot be used as true values of green biomass

to calibrate NDVI data through a standard calibration

approach (Osborne 1991). Instead, we used a predictive

framework based on a generalized non-linear model to

predict time variations in green biomass index from NDVI

time series. We used the number of intercept points as

response variable to explicitly model (error term, see Eq. 2)

the unexplained variance in the field data (e.g., sampling

error, mismatch in dates and scales, restricted sampling of

plant community). Because NDVI time series were also

partly affected by sampling error (water vapour or satellite

drift), we applied smoothing algorithm on these data (as

proposed by Reed et al. 1994) to account for discrepancies

in the local trend with regard to vegetation phenology. We

aimed here to improve the predictive power of NDVI data

on time variations in green biomass index.

Quantifying the NDVI saturation trend

Our aim here was to provide a unified methodological

framework accounting for previous findings which strongly

suggested a non-linear relationship between NDVI and

field measurements, with NDVI reaching a plateau for high

biomass values (see also ‘‘Discussion’’; Tucker et al. 1986;

Hobbs 1995; Gilabert et al. 1996). We developed a satu-

ration model including a restricted number of parameters

biologically meaningful which should help to standardize

between-study comparisons.

To quantify the saturation relationship between time

variations in NDVI values and green biomass index mea-

sured in the field (see ‘‘Results’’, Fig. 4), we developed a

generalised non-linear model based on

yi ¼ li þ �i ð2Þ

with

li ¼ b0 þ
b1 � NDVIi

b2 � NDVIi
ð3Þ

where yi is the number of intercept points at time i, b0 the

number of intercept points observed for a nil NDVI value

(see ‘‘Discussion’’), b1 the increase rate in number of

intercept points for a unity variation of NDVI values and
1

b2�NDVI
a saturation term with b2 the asymptotic NDVI

value.

As often encountered with field biomass data, the vari-

ance of the number of intercept points increased faster than

the mean ðl̂ ¼ 201:18; r̂2 ¼ 31792:16Þ; leading us to

make the assumption that the distribution of the intercept

points could be approximated by a negative binomial dis-

tribution (Bliss and Fisher 1953):

yi�NegBinðli; hÞ ð4Þ

leading to

Varð�iÞ ¼ li þ
l2

i

h
ð5Þ

where h is an extra parameter of the negative binomial

distribution which adjusts for the dispersion.

Based on the assumption that the response variable is

independently distributed, we computed maximum likeli-

hood estimates of {b0, b1, b2, h}. This assumption remains

valid as long as there is no autocorrelation in the residuals

of a given model, as it is the case in this study (see

‘‘Results’’). We implemented a function returning the log

likelihood of the parameter estimation in R (R Develop-

ment Core Team 2007, available upon request) and

maximised it numerically using the function ‘‘optim’’

(Nelder and Mead method, Venables and Ripley 2002). To

ensure that h[ 0 we used a log transformation of this

parameter in the likelihood function. We estimated the
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123



respective standard errors of fb̂0; b̂1; b̂2; ĥg by taking the

square root of the diagonal elements of the inverse Hessian

matrix (Seber and Wild 1989).

Improving the predictive power of NDVI data

To reduce the effect of cloud contamination on NDVI

values, i.e., to improve their predictive power on time

variations in green biomass index, we applied two different

algorithms on NDVImax time series. First, we computed the

NDVIsmooth time series using a non-linear running median

line-smoother algorithm (Tukey 1977), as proposed by

Reed et al. (1994). The median window was centred on

each observation and had a length of three. The first and last

values were computed using ‘‘Tukey’s end point rule’’, i.e.,

smi = median(yi, smi?1, 3 9 smi?1-2 9 smi?2) where yi is

the ith element of the vector to be smoothed and sm is the

smoothed one. This algorithm preserved the essence of the

NDVI time series while eliminating much of the contami-

nated data. Second, we decomposed the NDVImax time

series with a moving average filter (Kendall and Stuart

1976; Malinvaud 1978; Ibanez et al. 2006) to extract the

seasonal NDVI component (called NDVIcomp). We set the

order of the moving average at 2 (the window of the average

being 2 9 order ? 1), which corresponded to the last sig-

nificant time lag of the autocorrelation function performed

on NDVImax. We computed the first and last values by

filling them with the average of observations before

applying the filter. This algorithm was less conservative

than the non-linear running median line-smoother but was

more flexible given that we specified the smoothing order.

Model selection and model validation

We used the Akaike’s Information Criterion adjusted for

overdispersion and small sample size to perform model

selection among a set of three non-nested models including

either NDVImax, either NDVIsmooth or NDVIcomp as

dependent variable (QAICc, Burnham and Anderson 2002).

We re-estimated theta for each model (noted that the

maximum likelihood estimate of theta among the different

models were between 3.35 and 4.34). However, when we

assessed the significance of the intercept (b0) for the best

selected model, we kept the theta constant as recommended

by Venables and Ripley (2002). We assessed the predictive

power of the model by computing the coefficient of cor-

relation between predicted and observed values.

We evaluated the fit of the best model in two ways.

First, we performed a v2 Goodness of fit test (GOF) to

assess whether h has been estimated properly. Second, we

checked that the standardized residuals had a constant

variance and were ranging between ±2. Then, we used

both a parametric bootstrap and a Monte-Carlo procedure

(Manly 1997; Efron and Tibshirani 1993) to assess

the boundaries of the 95% prediction intervals (see

Appendix).

Graphics and statistical analyses were performed with R

2.6.0 (R Development Core Team 2007) using the

‘‘MASS’’ (Venables and Ripley 2002), ‘‘pastecs’’ (Ibanez

et al. 2006), ‘‘maps’’ (Brownrigg and Minka 2007) and

‘‘mapdata’’ (Brownrigg 2007) packages.

Results

Time variations in green biomass index

The survey of Molloy’s vegetation by the point intercept

methodology yielded information about the time varia-

tions in green biomass of A. magellanica and T. officinale

(n = 27 surveys; Fig. 2). Values were not available each

month due to logistic and climatic constraints that limited

Fig. 2 Time variations in the

number of intercept points for

A. magellanica (dashed black
line) and T. officinale (dashed
grey line)

Polar Biol (2009) 32:861–871 865
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the access to the study site. The number of intercept

points ranged from 0 to 400 for A. magellanica and from

10 to 190 for T. officinale. Figure 2 shows the extensive

development of A. magellanica occurring in December.

At this period, it can reach 30–40 cm high in a few weeks

(Boussès 1991). The development of T. officinale starts in

October–November and precedes that of A. magellanica.

To account for the variations in seasonal dynamics of

the two species in further analyses, we took the sum of

number of intercept points of both species for each time

period as a proxy for time variations in total green

biomass.

Relationship between NDVI and empirical field data

A good agreement was observed between the temporal

variations of the two raw NDVI time series and the time

variations in numbers of intercept points (Fig. 3). The time

variations in numbers of intercept points observed and

predicted from the non–linear model including NDVImax

were strongly correlated (robs.pred = 0.79 [0.59;0.90]95%;

QAICc = 98.64). Although the data better supported a

non-linear model including NDVIsmooth instead of NDVI-

max (QAICc = 88.76; robs.pred = 0.81 [0.63;0.91]95%), the

best model included NDVIcomp (QAICc = 75.1; robs.pred =

0.89 [0.77; 0.95]95%; Figs. 4, 5, 6). Parameter estimates for

the non-linear model including NDVIcomp were: b̂0 = 7.36

(intercept), b̂1 = 168.71 (slope), b̂2 = 0.54 (NDVI asymp-

tote), ĥ ¼ 4:54 (dispersion parameter), and their respective

standard errors was: 6.64, 47.13, 0.05, 1.33. Note that a

non-linear model without intercept {b1, b2, h}, including

NDVIcomp, gave a similar fit (QAICc = 75.6).

The goodness of fit test revealed that h has been esti-

mated properly (v2 = 24.56; df = 23; p = 0.37). The

standardized residuals of the NDVIcomp model were not

autocorrelated (rlag1 = 0.23; df = 25; p = 0.24) (Wey

1990), had a constant variance and ranged between -1.38

and 2.03 (except one, -3.44, in February 1985). These

results indicated that the non-linear model including

NDVIcomp fitted the data well, leading to a good agreement

between the number of intercept points observed and pre-

dicted by this model (Fig. 6)

Discussion

By providing a unified statistical framework that explicitly

account for saturation when relating NDVI and field

measurements, our approach allows to standardize com-

parisons among studies and should thus help to understand

Fig. 3 Time variations in

centred and scaled (mean = 0,

variance = 1) time series of field

measurements of total plant

biomass (sum of intercept points

of A. magellanica and T.
officinale; black points) and

centred and scaled NDVI

measurements of the two pixels

used in the analysis (pixel 3

solid grey line; pixel 4 solid
black line)

Fig. 4 Relationship between the total number of intercept points

observed (sum of intercept points of A. magellanica and T. officinale)

and the seasonal component of the NDVI (NDVIcomp) (black points).

The solid line represents predictions of the non-linear model adjusted

with NDVIcomp (see text). The dashed lines represent 95% bootstrap

prediction intervals (see Appendix)
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site-specific differences when assessing performance of

NDVI as a proxy of vegetation data. Based on a generalised

non-linear model, we were able to predict from both raw

(NDVImax) and processed (NDVIsmooth and NDVIcomp)

NDVI data a large part of the time variations (r2 from 62 to

79%) in green biomass index of the two dominant plant

species of the stand. Although our study was only based on

temporal replicates, not spatial, which are likely to improve

the performance of our model, this result is very encour-

aging. Indeed, it was obtained despite a restricted temporal

dataset, large water body in the pixel and a large scale

difference between field and satellite measurements which

are ‘‘non-ideal’’ conditions often encountered in polar and

wildlife studies. We have shown that applying a moving

average filter on NDVI time series reduces the effect of

temporal heterogeneity mainly caused by variations in

atmospheric conditions. However, in area where such

problems are limited, this method should be used with

caution as it may reduce the NDVI peaks in the curves,

which are assumed to be valid NDVI values, leading to

overlook important ecological variability (Reed et al.

1994).

The need to account for non-linearity

Our approach explicitly models the non-linear nature of the

relationship between time variations of NDVI values and

green biomass index suggested by previous validation

studies (Tucker et al. 1981, 1983; Goward et al. 1985;

Paruelo et al. 1997 but see Box et al. 1989). Tucker et al.

(1986) have demonstrated a consistent functional rela-

tionship between LAI and spectral vegetation index

derived from satellite measurements, where NDVI had an

obvious tendency to reach a plateau at high LAI levels. The

shape of the relationship indicated a temporary saturation

of reflectance, which disappears with the subsequent

senescence of the foliage (Gilabert et al. 1996). This sug-

gests that NDVI values systematically under estimate the

green biomass of stand with high production of green

biomass and strong foliage density.

We estimated an asymptotic NDVI value (0.54) greater

than the one (0.40) used by Box et al. (1989) who based

their study on Net Primary Production measurements

coming from different biomes including highly structured

ones such as equatorial rainforests. Thus, our result also

strongly supports the need to rely on non-linear model

when relating NDVI and field measurements, and as a

consequence the need of caution when using NDVI as a

linear proxy of vegetation productivity without validation.

As there is no arborescent or shrubby layer on the

Fig. 5 Time variations in field

measurements of total plant

biomass observed (sum of the

intercept points of A.
magellanica and T. officinale;

black points) and predicted by

the non-linear model adjusted

with NDVIcomp (solid line; see

text). The dashed lines represent

95% bootstrap prediction

intervals (see Appendix)

Fig. 6 Number of intercept points observed and predicted by the

generalised non-linear model with NDVIcomp as explanatory variable.

The solid line represents the regression line of the linear model fitted

with the number of intercept points predicted as the response variable

and the number of intercept points observed as the explanatory

variable

Polar Biol (2009) 32:861–871 867

123



Kerguelen archipelago, we can explain this rapid saturation

of NDVI by the strong foliage density of A. magellanica.

The monthly resolution of NDVI data probably also con-

tributes to this result. Indeed, the compositing procedure of

PAL-NDVI data is based on the selection of the maximum

NDVI bin (see Agbu and James 1994). Thus, during the

growing season, if the field measurements occurred at

the beginning of the month, it is likely that the NDVI

bin retained was the one corresponding to the end of the

month, i.e., the NDVI value was representative of a

higher green biomass than the one measured in the field.

Using satellite data with a higher temporal resolution

should reduce this phenomenon because it will reduce

the delay between acquisition date of field and satellite

measurements.

Relating NDVI and biomass data in subantarctic

environment

The study reported here also raises issues of different

technical refinements and specificity when relating NDVI

and field measurements which might be encountered in

multiple field studies and in particular in subantarctic

environment. First, if there is no green biomass, the NDVI

value is expected to equal zero and the curve fitted should

therefore pass by the zero point (Fig. 4). However, we

estimated an intercept (Eq. 3) because field measurements

were only based on the two main species of the stand

(Boussès 1991). This suggests that a zero intercept point

value would not necessarily correspond to a zero NDVI

value. We therefore expected a negative intercept (b̂0).

Nevertheless, we obtained a positive estimation of the

intercept (b̂0) that could be explained by the temporary

occurrence of snow in the pixel, which has a differential

influence on satellite than on the field measurements. For

example, if the soil is largely covered by snow, the satellite

measurement will converge to zero. Due to special expo-

sition or topography conditions, some parts of the pixel are

likely to be locally free of snow. This could influence the

field but not the satellite measurements if the area con-

cerned is smaller than the nominal resolution of the

satellite Field Of View (1.1 km for AVHRR data). Here,

the intercept (b̂0) did not significantly improve the fit of the

model, suggesting that in our case the presence of snow and

other species had a negligible effect on the shape of the

relationship between time variations of NDVIcomp and

green biomass index (see Fig. 4).

Second, a major problem for validating satellite mea-

surements is to scale biophysical parameters from the plot

to larger scales. In this study, we compared NDVI time

series at 8 km 9 8 km spatial resolution, with empirical

field measurements coming from three transects of 3.5 m

long (*10 m2). In our case, however, the limitation due to

very high spatial resolution of empirical field measure-

ments could be overcome by the relative homogeneity of

the vegetal stand. This is corroborated by the similarity of

the four NDVI time series (see Fig. 3 and ‘‘Materials and

methods’’). Moreover, the presence of sea water in the

NDVI pixels is likely to increase their spatial resolution.

This is related to the binning process of AVHRR data,

which retained the maximum NDVI value (see Agbu and

James 1994). Indeed, because here the greenness intensity

is likely greater on land than on water, the NDVI values

retained are more likely representative of a vegetated area

smaller than 64 km2.

Third, atmospheric conditions such as cloud cover and/

or aerosols have a strong influence on NDVI values due

to differential effect of water vapour on measurements

performed by the red and near infra-red channels of the

radiometer (Forster 1984; Holben 1986; Gutman 1991).

The compositing process based on the maximum NDVI

value removes a large part but not all the contamination

of NDVI data by atmospheric conditions. For instance, in

January 1986, from September to December 1986, and in

December 1987, NDVI time series were steady or

decreased, despite a local rising trend (see Fig. 3). Under

the assumption that NDVI fluctuations represent time

variations in green biomass index, the discrepancies of

NDVI values regarding the local trend cannot be related

to a decrease in green biomass because they appeared

during the developmental phase of the vegetation

dynamics. However, the extreme climatic conditions that

occurred on the Kerguelen archipelago (see ‘‘Materials

and methods’’) could explain these unexpected NDVI

values. As proposed by Reed et al. (1994), smoothing

NDVI time series (NDVIsmooth) improves the intensity of

the relationship between time variations of green biomass

index and NDVI, but irregularities are still present,

especially for January 1986. However, using the seasonal

component of NDVI time series (NDVIcomp) to predict

time variations in green biomass index provided better

results than NDVIsmooth.

Conclusion

The originality of our study resides in the presentation of

a new and general modelling approach to relate NDVI

and field vegetation data that explicitly includes the sat-

uration of NDVI suggested by previous studies (Tucker

et al. 1986; Hobbs 1995; Gilabert et al. 1996). Our model

does not require the use of variable transformation and

relies on biologically meaningful parameters. We thereby

provides a way to standardize comparison between studies

investigating the saturation of NDVI data in contrasted

environmental conditions. Our study is also the first

868 Polar Biol (2009) 32:861–871
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validation of NDVI data in a subantarctic ecosystem and

should be of great interest for scientists using NDVI in

subantarctic environment and more generally in ecologi-

cal studies, as it reinforces the idea that NDVI is most

often a non linear proxy of plant biomass. Finally,

although we show that NDVI was a good proxy of time

variations in green biomass, further studies are required to

assess the generality of such results for subantarctic

environments.
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Appendix

This appendix describes the 3 steps of the statistical pro-

cedure used to compute prediction intervals of the model

presented in this study (see Eqs. 2, 3),

Step 1: Computation of the mean model predictions

We obtained maximum likelihood estimation of {b0, b1,

b1, h} noted fb̂0; b̂1; b̂1; ĥg and computed the means ðl̂iÞ
predicted by the fixed part of the model:

yi�NegBinðl̂i; ĥÞ ð6Þ

where

l̂i ¼ b̂0 þ
b̂1NDVIi

b̂2 � NDVIi

ð7Þ

Step 2: Parametric bootstrapping of the fixed part of the

model

We computed 1,000 vectors of bootstrap observations of

length n = 27,

Q�j½l�j1 ; l
�j
i ; � � � ; l�jn ; �ð1� j� 1;000Þ ð8Þ

where each li
*j was sampled in

NegBinðl̂i; ĥÞ ð9Þ

We fitted the non-linear model (see Eq. 2) on each Q*j

to obtain 1,000 bootstrap vectors of parameter estimations,

fb̂�j0 ; b̂
�j
1 ; b̂

�j
2 ; ĥ

�jgð1� j� 1;000Þ ð10Þ

Using Eq. 7, we computed the 1,000 bootstrap vectors

of predictions,

P̂�j½l̂�j1 ; l̂
�j
i ; � � � ; l̂�jn �ð1� j� 1;000Þ ð11Þ

Then, to compute the 95% bootstrap confidence

intervals of the ith predicted mean ðl̂iÞ; we have taken

the 0.025 and 0.975 quantiles of the corresponding l̂�i
bootstrap distribution.

Step 3: Monte Carlo generation of the posterior distri-

bution of individual predictions

In order to obtain the 95% prediction intervals, we

included the random part of the model in the bootstrap

procedure. Thus, we had a noise (Negative Binomial) to the

1000 bootstrap vectors of predicted means ðP̂�j; see Eq. 11)

to take into account the individual variability,

P̂��j½ŷ�j1 ; ŷ
�j
i ; � � � ; ŷ�jn �ð1� j� 1;000Þ ð12Þ

where each ŷ�ji (see Eq. 2) was sampled in

NegBinðl̂�ji ; ĥ
�jÞ ð13Þ

Then, to compute the 95% bootstrap prediction interval

of the ith predicted observation ðŷiÞ; we took the 0.025

and 0.975 quantiles of the corresponding ŷ�i bootstrap

distribution.
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Bråthen K, Ims R, Yoccoz N, Fauchald P, Tveraa T, Hausner V

(2007) Induced shift in ecosystem productivity? Extensive scale

effects of abundant large herbivores. Ecosystems 10:773–789

Polar Biol (2009) 32:861–871 869

123



Burnham K, Anderson D (2002) Model selection and multimodel

inference: a practical information–theoretical approach, 2nd edn.

Springer, New York

Chen J (1999) Spatial scaling of a remotely sensed surface parameter

by contexture. Remote Sens Environ 69:30–42

Diallo O, Diouf A, Hanan N, Ndiaye A, Prevost Y (1991) AVHRR

monitoring of savanna primary production in Senegal, West

Africa. 1987–1988. Int J Remote Sens 12:1259–1279

Efron B, Tibshirani R (1993) An introduction to the Bootstrap.

volume 57 of monographs on statistics and applied probability

Forgeard F, Chapuis J-L (1984) Impact du lapin de garenne,

Oryctolagus cuninculus, sur la végétation des pelouses incen-

diées de Paimpont (Ille-et-Vilaine, France). Acta Oecol 5:215–228

Forster B (1984) Derivation of atmospheric correction procedures for

LANDSAT MSS with particular reference to urban data. Int J

Remote Sens 5:799–818

Frank D, McNaughton S (1990) Above-ground biomass estimation

with the canopy intercept method—a plant-growth form caveat.

Oikos 57:57–60

Garel M, Solberg E, Sæther B-E, Herfindal I, Høgda K (2006) The

length of growing season and adult sex ratio affect sexual size

dimorphism in moose. Ecology 87:745–758

Gilabert M, Gandia S, Melia J (1996) Analyses of spectral-biophysical

relationships for a corn canopy. Remote Sens Environ 55:

11–20

Gong D, Ho C (2003) Detection of large-scale climate signals in

spring vegetation index (Normalized Difference Vegetation

Index) over the Northern Hemisphere. J Geophys Res 108:4498

Goward S, Tucker C, Dye D (1985) North American vegetation

patterns observed with the NOAA-7 advanced very high

resolution radiometer. Plant Ecol 64:3–14

Guo W, Yang T, Dai J, Shi L, Lu Z (2008) Vegetation cover changes

and their relationship to climate variation in the source region of

the Yellow River, China, 1990–2000. Int J Remote Sens 29:

2085–2103

Gutman G (1991) Vegetation indices from AVHRR—an update and

future preospects. Remote Sens Environ 35:121–136

Hobbs T (1995) The use of NOAA-AVHRR NDVI data to assess

herbage production in the arid rangelands of Central Australia.

Int J Remote Sens 16:1289–1302

Holben B (1986) Characteristics of maximum-value composite

images from temporal AVHRR data. Int J Remote Sens 7:

1417–1434

Hope A, Engstrom R, Stow D (2005) Relationship between AVHRR

surface temperature and NDVI in Arctic tundra ecosystems. Int J

Remote Sens 26:1771–1776

Hunt E, Piper S, Nemani R, Keeling C, Otto R, Running S (1996)

Global net carbon exchange and intra-annual atmospheric CO2

concentrations predicted by an ecosystem process model and

three-dimensional atmospheric transport model. Glob Biogeo

Cycles 10:431–456

Ibanez F, Grosjean P, Etienne M (2006) pastecs: package for analysis

of space–time ecological series. R package version 1.3–4

Jia G, Epstein H, Walker D (2006) Spatial heterogeneity of tundra

vegetation response to recent temperature changes. Glob Change

Biol 12:42–55

Jonasson S (1988) Evaluation of the point intercept method for the

estimation of plant biomass. Oikos 52:101–106

Kendall M, Stuart A (1976) The advanced theory of statistics, vol 3.

Design and analysis, and time-series. Griffin, London

Lloyd D (1990) A phenological classification of terrestrial vegetation

cover using shortwave vegetation index imagery. Int J Remote

Sens 11:2269–2279

Lobo A, Moloney K, Chic O, Chiariello N (2008) Analysis of fine-

scale spatial pattern of a grassland from remotely–sensed

imagery and field collected data. Landsc Ecol 13:111–131
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